Developer Reference Manual
Fifth Edition

Copyright ©2009 Nelson Consulting, Inc.
All rights reserved

Foundation and the Foundation Developer Reference Manual
written by Walt Nelson with credit to Dave Batton

Software License & Limited Warranty

PLEASE READ THIS LICENSE CAREFULLY BEFORE USING THE
SOFTWARE CONTAINED ON THE ACCOMPANYING DISKS. BY USING
THE SOFTWARE, YOU AGREE TO BECOME BOUND BY THE TERMS

OF THIS AGREEMENT, WHICH INCLUDES THE SOFTWARE LICENSE
AND WARRANTY DISCLAIMER (collectively referred to herein as the
“Agreement”). THIS AGREEMENT CONSTITUTES THE COMPLETE
AGREEMENT BETWEEN YOU AND NELSON CONSULTING, INC. IF YOU
DO NOT AGREE TO THE TERMS OF THIS AGREEMENT, DO NOT USE
THE SOFTWARE AND PROMPTLY RETURN THE PACKAGE FOR A FULL
REFUND.

Nelson Consulting, Inc. (“Author”) grants you a nontransferable, non-
exclusive license to use this copy of the computer programs (“Software”)
and accompanying materials according to the following terms:

Ownership of Software

The enclosed manual and Software were developed and are copyrighted
by the Author and are licensed, not sold, to you by the Author for use
under the following terms, and the Author reserves any rights not
expressly granted to you. You own the disks on which any software is
recorded, but the Author retains ownership of all copies of the Software
itself. Neither the manual nor the Software may be copied in whole or in
part except as explicitly stated below.

License

You may:

i) make backup copies of the Software for your use provided all copies
bear the Author’s copyright notice;

if) use this Software to create an unlimited number of custom or
COMPILED commercial databases or applications created by the
original licensee.
No additional product license or royalty is required except as noted
below.
Databases created with the Software may be distributed only if they
present the Software in a substantially modified form.

Restrictions

You may not:

i) distribute the UNCOMPILED, open source code of a custom database
to more than one client, customer, developer, or other person or
organization without written permission from the Author;

iy distribute copies of the Software, even if substantially modified, to
any client, customer, developer or other person or organization, for
use as a development shell;

iify remove any proprietary notices, labels or marks on the program and
accompanying materials;

iv) remove or replace the 4D or the Author copyright notices displayed
in the About Box of any program created with the Software; or

v) rent, transfer, or grant any rights in the Software to any person
without the prior written consent of the Author.

Termination

Unauthorized copying of the Software or the accompanying materials,

or failure to comply with the above restrictions, will result in automatic
termination of this license and will make available other legal remedies
to the Author. Upon termination you will destroy or return to the Author
the program, accompanying materials, and any copies.

Limitation of Liahility

In no event will The Author, ITS DEALERS, DISTRIBUTORS, AGENTS, OR
EMPLOYEES be liable for any damages, including loss of data, lost profits,
or other special, incidental, consequential or indirect damages arising
from the use of OR INABILITY TO USE the SOFTWARE or accompanying
materials, however caused and on any theory of liability. This limitation
will apply even if The Author has been advised of the possibility of such
damage. You acknowledge that the license fee reflects this allocation OF
risk. Some jurisdictions do not allow limitation or exclusion of liability
for incidental or consequential damages, so the above limitation may not
apply to you.

Warranty Disclaimer

The Software and accompanying materials are provided “as is” without
warranty of any kind, either express or implied, including, but not limited
to, the implied warranties of merchantability and fitness for a particular
purpose, except as noted below. The Author does not warrant that the
functions contained in the program will meet your requirements or that
the operation will be uninterrupted or error free. The entire risk as to

the use, quality, and performance of the program is with you. Should the
program prove defective, you, and not the Author, assume the entire cost
of any necessary repair.

Limited Warranty

The Author warrants the diskettes on which the Software is furnished to
be free from defects in materials and workmanship under normal use for
a period of ninety (90) days from the date of delivery to you as evidenced
by a copy of your receipt. The Author’s entire liability and your exclusive
remedy as to the diskettes (which is subject to you returning the diskettes
to the Author with a copy of your receipt) will be the replacement of the
diskettes. Some jurisdictions do not allow limitations on how long an
implied warranty lasts so the above limitation may not apply to you. This
warranty gives you specific legal rights. You may also have other rights
which vary from jurisdiction to jurisdiction.

General

Use, duplication, or disclosure by the U.S. Government is subject to
restrictions stated in paragraph (c) (1) (ii) of the Rights in Technical Data
and Computer Software clause at 252.227-7013.

This Agreement is the entire agreement between us and supersedes any
other communications with respect to the program and accompanying
materials.

If any provision of this Agreement is held to be unenforceable, the
remainder of this Agreement shall continue in full force and effect.

Foundation Developer Reference

License

Table of Contents

Introduction
History of FOURAION.ttt e e 12
What Foundation Is Not oo 14
Sy SIBM R qUITB IS oo ettt 14
Developer ReqUITEMENTS.ttt ettt et e 14
T (] 15
About Foundation
Foundation Terminology.uuuee 17
07111 19
Using Foundation.onee 21
Naming COMVERTIONS.ottt e et ettt e et e et et e e e e 2

Upgrading to Foundation 5

About Foundation 5o e 23

Upgrading From a Version 5 Database to New Version 5 of Foundation i 25

Upgrading Your Foundation Version 4 SIructure o i i e 25
Starting Fresh with Foundation

1011 29

Create the Tables, Fields and Formso oo 30

CUStOmIZe It . e 31

Messing with Components
What 4D Documentation Should [Read? o 34
Sub-component DEPendenciesuenii it 35

Foundation Developer Reference 3 Table of Contents

Art Component

Language Reference. 39
I ST 39
I 40
Fd_Art et AbOUtFOrm . o oo 4
Fd_Art_SetStartupDialogRorm. 4]
Fd_Art_StartupDialog 42
Fd_Art_StartupDialogClose oot 42
Fnd_Art_StartupDialogFormMethod 43
Buttons Component
Language Reference. oo 51
Fd_BHN_CreateBUONottt e e 51
TS (T T 52
Fnd_Brin_GetPictureNameottt 52
Fnd_Btin_GetPictureWidtho 53
Fd BN INf0. . oo 53
Fd BN IOt Orm . . . oo 54
Fnd_Bttn_SetBackgroundPict.o 54
Frd_BHn_SefTextPrOPerties.ottt 55
T 55
Data Component
Language Reference. 56
Fd_Data_EmailAddressErmoro oo 57
Fd_Data_FormaiBypassey.ooeee 57
Fnd Dot FormatBrror . .« oo 57
Fnd_Data_FormatPhoneo 58
Fnd_Data_FormatPostalCodeoo oo 58
T T P 58
Fnd_Data_FormatWebURL.o 59
L L 59
Fnd_Data_ParseNameo 60
Date Component
Language Reference. 61
Fnd_Date_Calendar 62
Fnd_Date_DateAndTimeTolS0ottt 62
Fd_Date_DateToSINg.ot 62
Fnd_Date_EndOfMonth. 63
Fnd_Date_EntryFilter 63
I 64
Fd_Date_IS0T0DUIE. . . oo v et 64
Fd_Date_IS0T0TIME. . o oottt et e 64
Fnd_Date_MonthName 65
Fnd_Date_RouUndTime.o oot 65
Fd_Date_SngToDate.\ttt 65
Fnd_Date_SystemDateFormat.oo 66
Fnd_Date_YearMonthDayToDate ettt 66
Dictionary Component
Language Reference. 70
Fnd_Dict_DaIATYPE. 70
P DICt_GIAITOY 71

Foundation Developer Reference 4 Table of Contents

Fnd_Dict_GetBooleano 71

FODICt_GetDUtE. . . . oottt et 71
Fnd_Dict_GetLongint.t 71
S O S 72
Fnd_Dict_GetRealo 72
S 72
S 73
Fnd_Dict_HOSKRY 73
) 73
I T 73
Fnd _Dict_IsValido 74
Fnd_Dict_HemOOUNT . . oottt 74
B DiCt KRy 75
Fnd_Dict_LoadFromBlobo 75
Fnd_Dict_LoadFromFile.o 75
I L T 75
I L 76
L T 76
FO DIt ROMOVEottt et e e e 76
1 T 77
Fnd_Dict_RettinCoUNT.ottt e 77
Fnd_Dict_SaveToBlob 77
Fnd_Dict_SaveToFileo oot 77
B DiCtSBIAITY 78
Fnd_Dict_SetBooleano 78
FO L DiC_SeIDUIE . . . oottt 79
Fnd_Dict_SetLongint.o 79
S O 79
FndDict_SetRel . . . oo 80
Y T 80
Y L T 80
Fd Dict Valueso 81
Dialogs Component
DIl0gs. 83
MBS UGS . . . o vttt 85
Language Reference. 86
Fnd DIy Alort. . . 86
Fnd DIy Confirm . 86
Fnd_Dlg_Customlconooe 87
Fnd_Dlg_Display. 87
Fnd_Dlg_GetReqUES. 88
Fnd DIy Info . . 89
N Dlg MESSUGE. 89
Fnd_Dlg_MessageCanceled.o o 90
Fnd_Dlg_MessageClose.oueeee e 90
Fnd_Dlg_MessugeOpen. vt 90
Fnd_Dlg_MessageUpdate oo e 9
DIy REQUEST 9
Fnd_Dlg_SetBUONS 92
Fnd_Dlg_SetCancelable. o 92
Fnd DIy Setleon. 93
Fnd_Dlg_SetPosition.eee 93
Fd_Dlg_SIPrOgrEssottt 93

Foundation Developer Reference 5 Table of Contents

Fnd_Dlg_SetREQUEST. 94

Fnd DIy SetText. 95
Fnd_Dlg_SetWindowTitle. 96
Find Component
Language Reference. 99
Fnd RN AddCUSIOM . .o 99
Fnd _Find _AddRield . . . oo 100
Fnd_Find_AddMUliField oo 100
Fnd_Find _AddSeparator 101
Fnd_Find_AddSubfleld 101
Fnd _Find_AddTableo 102
Fnd_Find_Display. 102
Fd FNd M0 oo 102
Fnd_Find_SetEditorBUON. . . . oo oot 103
General Component
Language Reference. 104
Fnd_Gen_ _BugAlert 105
FO_Gen_BUHONTEXE. . . oo oottt et e e e e e e e e 106
Fnd_Gen_CancelQUit.t 107
Fnd_Gen_CenterWindow.ot 107
Fnd_Gen_ComponentAvailable 108
Fnd_Gen_ComponentCheck. e 108
Fnd_Gen_ComponentData.oeee 109
Fnd_Gen_Componentinfoo 110
Fnd_Gen_ComponentReportooe 1l
Fd_Gen_CurrentFormIype.ot 1l
Fnd_Gen_CurrentTableo 112
Fd_Gen_FileNGme . ..o 112
Fnd_Gen_FormMethodo 13
Fnd_Gen_GetDatabaselnfoo oo ot 13
BN GetStrINg. 114
FO B Inf0. .o oo 114
Fnd_Gen_LaunchAsNEwWPIOCESSttt e 115
FO Gen _MenUBAr. . . oo 116
R L) 116
Fnd_Gen_PluglnAvailable. 117
G QUi OW . oo 117
Fnd_Gen_RemoveAdivationCode.ot ettt 118
R A 118
Fnd_Gen_SelectionChangedo 118
Fnd_Gen_SetDatabselnfoo oo et 119
Input/Qutput Component
InSTAllOtion. . . .o 120
Language Reference. 121
Fnd_Hook_10_DisplayRecord o 122
Fnd_Hook_10_DisplayTableoo o 122
Fnd_Hook _10_InputFormButtonoee 122
Fnd_Hook_10_SelectionChangedooooiii 123
Fnd_10_AddMultipleRecordso oo 124
Fnd_10_DisplayRecord 124
Fd_10_DisplayNavBUtONSot 125

Foundation Developer Reference 6 Table of Contents

Fnd_10_DisplayTable 125

FO 0 Info . o oo 126
Fnd_10_InputFormMethod 126
Fnd_10_InputFormName. 127
I O 127
Fnd_10_OutputFormMethod 128
Fnd_10_OutputFormNameooe 128
Fnd_10_RecordBditedot 129
Fnd_10_ToolbarlconGroup.oveee 129
Fad_10_UpdateToolbar 131
Lists Component
InStAllOtion. . . oo 136
Language Reference. 138
Fnd_Host_List_SetEditablebists.o ot 138
Fd_List_AddBUHON . . oo oottt e 138
FdList AddROm . . . oo 139
Fnd_List_AddToListEdItOr. oottt 139
Fd_List_CROICELIST . . oo e e ettt e e e 140
Fd_List_CommandDialog.ooeeee 140
Fd_List_EdiHONe . . . oot 140
FO LISt EdOr. . o . oot 141
FO LISt 00 . oo 141
] 142
Fd LISt ONSHAFUD « .. 142
Localization Component
Language Reference. 147
Fnd_Loc_Duplicatelist.t 147
FO L0 B dItOr. . ..o 147
Fnd_Loc_FixButtonWidthso oo 147
Fnd_Loc_FixLabelWidths.o ooo e 148
PN LOC GOISING 149
T 150
Fnd_Loc_LanguageCodeoueeeee 150
Log Component
Language Reference. 152
Fnd_Log AddEntry 153
Fnd_Log Enable. 153
PR Log Info. 153
Menus Component
InStAllOtion. . ..o 155
Language Reference. 156
Fnd_Menu_Disabledll. 156
FO MenU_INT0 oo 156
Fd MenU_MenUBL. . oo 157
Fnd_Menu_MenuBarNume oo oot 157
Fnd _Menu_Window_Addo 158
Fnd_Menu_Window_RemOveo oottt 158
Message Component
Language Reference. 159
Fnd_Msg_Broadeast 160

Foundation Developer Reference 7 Table of Contents

I 160

Fnd_Msg_GetParametero 160
PR Mg Info. . 161
Fnd_Msg_PackParameters oo 161
Fnd_Msg_QuitBackgroundProcess vttt e 161
N Mg SN . .. 162
Navigation Component
Language Reference. 164
Fnd_Nav_AddButionMethodo 164
Fnd_Nav_AddButtonTableo oo 165
FO NGV Deleteot 165
Fnd Nav_Display 166
I T 166
Preferences Component
INStAllOtion. . ..o 171
Language Reference. 172
Fnd_Pref_Display 172
Fnd_Pref_GetBoolean.oooe e 173
Fnd_Pref_GetlongInt 174
Fnd_Pref _GetReal.o 174
R S L T 175
Fd Prel GetWindowot 175
Fd Prel Info. . oo 176
Fnd_Pref_SetBooleno 177
Fnd_Pref_Setlonglnt. 177
Fd Pref _SetRealo 178
I L 178
FdPref _USerName. . oottt 179
FdPrel SetWindow . ..o 179
Password Component
Language Reference. 181
Fnd_Pswd_BulletEntry 182
Fd_Pswd_CustomCharactersoooo ittt 182
Fnd_Pswd_ExcludeCharactersoooi i 182
Fd_Pswd_GeneratePassword oo 183
Fd_Pswd_GeneratorDialogooeeee 183
S (T 183
Fnd_Pswd_Maxlength 184
Fnd_Pswd_MinLength. 184
S e o 184
Fnd_Pswd_USeNUMBETS oottt e e 185
Fad_Pswd_UseSymbols. 185
Fd_Pswd_USBUPPEICUSEttt 185
Records Component
Language Reference. 186
Fnd _Hook _Rec_ Deletet 187
Fd 00K Rt NeW.o 187
Fd_Rec DeletelUserSet.ttt 187
Fd Ree Info .o oo 188
Pl _Rec NewReeord.o 188
Pl ReC DMt SUBSEE . ..ottt 188

Foundation Developer Reference 8 Table of Contents

Fd Ree ShowAll . .o 189

T A S 189
Registration Component
InStAllOtion. . . .o 194
QUICK HOIE . oot 195
TN UESo 196
How the Unlock Code is Generated oo e 200
Language Reference. 203
Fnd_Reg_BuyNowBURON. 203
Fnd_Reg_BuyNowURL.o 203
Fnd_Reg_DemoDays. 204
Fnd_Reg_DemoDialog.ouee 204
Fnd_Reg_DemoDialogFormMethod 205
Fd_Reg_DemOMESSUGEttt ettt ettt ettt 205
Fnd_Reg_FeatureName. 206
Fnd_Reg_GetDemoDaysRemainingoooeeeei 206
Fd_Reg_GetEXpirationDateoeett 207
Fnd_Reg_Getlicenselnfo.o 207
Fnd_Reg_GetUserNameoeeete 207
Fnd Reg Info. . 208
Fnd_Reg_RegDialogFormMethod. 208
Fnd_Reg_RegDialogOKBUMONt 208
Fnd_Reg_RegistrationDialog.ooeeee 209
Fd_Reg_RegistrationStateuee e 209
B R ROSBE. 210
Fnd_Reg_SetSeerethey 210
Fnd_Reg_StartDemoPeriofo M
Additional Credifs.o oo il
Shell Component
Language Reference. 212
Fnd_Hook _Shell _Setup 213
Fnd_Hook_Shell _Administrationooiee e 213
Fnd_Hook _Shell _Find . ..o 214
Fnd_Hook_Shell_InitializePluglnso 214
Fnd_Hook_Shell_OpenTable. 214
Fnd_Hook_Shell_NavPaletteot e 214
Fd_Hook _Shell _Print . oot 215
Fnd_Hook_Shell _Quito 215
TN [A 215
Fnd_Hook_Shell_SpecialFunciionsoo oo 216
Fnd_Hook _Shell _Startup 216
Fnd _Shell _Administration.o oo 216
Fnd_Shell_ExcludeFromQuitoooii i 216
N I 217
Fnd_Shell ISRURNINGo 217
Fnd_Shell_NavigationPaletteo 218
N T D 218
Fnd_Shell _OnStartup . . . 218
Fnd_Shell_OpenTableDialog 218
N I S 219
Fnd_Shell _ShowdDSplashScreen. 219
Fnd_Shell _SpecialFunclionso oo 219

Foundation Developer Reference 9 Table of Contents

Sort Component

Language Reference. 220
Fnd_Sort _AddFieldo 221
Fd_Sort_AddSeparator 221
Fnd_Sort_AddTable.o o o 221
FO_SOM_DITOCtON . . . oottt et e 122
Fnd_Sort_Display 222
FE L S0rt M0, oo 122
Fd_Sort_OrderByEditor.ot 223
Fnd_Sort_SelectedField.ooo o 223
Sequence Numbers Component
INStAllOtion. . .o 225
Language Reference. 227
Fnd_Hook_SqNo_SetlDField.oo 227
Fnd_SqNo_Editor 227
Fnd_SqNo_Enable. 228
B SN X .. 228
BN SN Bt 229
Fnd_SqNo_Info. .. 229
N SN U 230
B SN Bt 230
Fd_SqNo_SetRecordID.ottt 231
Text Component
Language Reference. 232
P ToXE BUSEOATOTEXEttt ettt et 233
Fnd_Text_Capitalize 233
Fnd_Text_CapitalizeExclude o 233
Fnd_Text_DecodeBase@dBlob oo 234
Fnd_Text_EncodeBasebdBlobooio et 234
Fnd_Text_FormatNUMbero 234
FE TeXt 00, oo 235
Fnd_Text_PadSpaces.o 235
Fd_TeXt_SHIPSPOCES 236
Fnd_Text_TextToBaSeOdottt e 236
FdTeXt _TeXITOMD S . .ottt 236
B TeXt WrO. 237
Toolbar Component
Language Reference. 240
Fnd Tl Button_Add. ... 41
P Thr_BURON_C0UNT . . oo 242
Fnd_Tlbr_Button_Enabled o 242
P T D BUROM_LCON .. oot 242
O TDr BURON_INSEIT . . .ottt 243
Fnd_Tlhr_Button_Label 243
FThr BURON _MeNU ..o 244
Fnd_Tlhr_Button_Methodo 245
P T BURON _NOME . . .ot 245
Fd T _BUHON_REMOVE.ttt et 246
T LA 246
Fnd_Thr_Divider_Add 246
Fnd_Thhr_FormMethod 247

Foundation Developer Reference 10 Table of Contents

FO TIbrInfo. oo 247

T L 248
Fd_TIDr_SHOUSMESSAQR. ettt ettt ettt e 248
FdTIbr Lot Orm . . oo 249
Fnd TIbr Style 250
Virtual Structure Component
Language Reference. 251
Fnd_VS_CreateNameListsottt et e 252
Fd VS FeldNOME. . . oo 252
Fd VS GetFields oot 253
Fd VS _GetTables. . . . oot 253
FO NS 00 oo 253
Fnd_VS_ReplaceSITing. 254
Fnd_VS_SetFieldTitle.o 254
Fnd_VS_SetFieldTitlesot 255
Fnd_VS_SefTableTitle . ..o 255
Fnd_VS_SetTableTitles. oo 255
Fnd VS _TableName . .. oo 256
Fd_VS_USNMELISTSttt e e e e e e 256
Windows Component
Language Reference. 258
Fnd_Wnd_CancelCloselll.o 258
Fnd_Wnd_CloseAlWIndows.o o e e e 258
FI N CI0SBBOX. . . oo ettt 259
FO N Cl0SBNOW . . oot 259
R L 260
I I T 260
Fnd_Wnd_OpenFormWindow 261
Fnd_Wnd_0penWindow 261
FE N POSTION . . . oo 262
Fd _Wnd_SaVePOSTION. ettt e 263
Fnd_Wnd_SendCloseRequestsoeeeee 263
O S (L 264
O Y O) D 264
Fd Wnd SetTitle. . . oo 264
NS oI TYPe. . . 264
FO N Tl o 265
N N Ty e 265
Fd_Wnd_UseSavedPosifionoooiitt et 266
Additional Credifs.o oo 266
Constants
Fd_Gen_CurrentFormIype. 267
Fnd DIy Setleon. 268
FE N POSTION . . . oo 268

Foundation Developer Reference 1 Table of Contents

Introduction

I would like to give a little background on Foundation for those of you just joining us.

History of Foundation

E)undation is a “shell” for 4th Dimension. It is a 4D database — just like the ones you can create —
except that instead of specific tables and fields, it contains generic methods and forms that can be used
as a starting point for your databases. You create custom databases with Foundation by adding tables and
fields to a copy of the Foundation structure file. When you switch to 4D’s Custom Menus environment,
Foundation will manage the menus, windows, and just about everything else.

With the release of Foundation 5, Foundation is now a single component that can be installed into any
existing 4D database to provide additional functionality. Now you will be able to develop better databases
in less time because Foundation is:

Foundation Developer Reference 12 Infroduction

Professionally Designed and Coded

Foundation’s original author, Dave Batton, has been working with 4th Dimension since its release in the
U.S. in 1987. He is the author of the numerous 4D plugin packages, and many of the example databases
available from the 4D web site. Dave is also a regular 4D Summit Conference presenter, co-creator of the
4DToday.com web site, and considered an expert in interface design within the 4D community. The new
owner of Foundation is Walt Nelson from beautiful Seattle, WA. He has been working with 4D just as long
as Dave has. He hopes to maintain the high quality of Foundation that Dave has created. Any problems
with Foundation 5 are purely Walt's doing. Contact him at walt(@foundationshell.com with your feedback.

Thoroughly Tested

Foundation has been extensively tested. It is getting a workout every day from thousands of end-users
under widely varying conditions, providing much more testing than any single developer could possibly
conduct.

Modular and Extensible

Foundation is designed to work for you. You should not have to change the way you work just because
you are using a shell. Foundation’s well-written, modular code is designed to be pulled apart and
manipulated into whatever you need a shell to be. If you do not like one of Foundation’s features, just
take it out. Want to add a feature to your database? You can add new capabilities to your database just by
installing a new component.

Multi-User Ready
All of Foundation’s features are multi-user ready. Semaphores are used wherever necessary. If any feature
that manipulates records encounters a locked record, the user is notified of the conflict.

Compiler Ready

Foundation is compatible with 4D’s built-in compiler. All of Foundation’s local variables have been
declared at the top of the method in which they are used. Process and interprocess variables are typed in
compiler methods. And 4D’s CLEAR VARIABLE command is not used in any of Foundation’s code, so
your database will behave the same compiled as it does interpreted.

4D v11 SQL Required
Foundation 5 was created specifically to take advantage of the capabilities in 4th Dimension v11 SQL. It
requires 4D v11, and we recommend you use 4D v11.4, at a minimum.

4D Version 2004 Users
If you are using a prior version of 4D, we still offer Foundation 4 which works with 4D 2003 and 4D 2004.

Human Interface Guidelines (HIG) Compliant
Foundation’s interface is designed to give your database a professional look and feel. The form templates
in the Foundation component will help you keep a consistent look as your database grows.

Acknowledgements
[(Walt Nelson) would like to thank you all for purchasing Foundation and supporting 4D third party
products. Without your ongoing support, these products could not exist. Also, I would like to thank all

Foundation Developer Reference 13 Infroduction

http://4DToday.com/

the beta testers without whom this product would not have shipped. Guy Algot, Gary Boudreaux, Mike
Erickson, Graham Langley, Justin Leavens, Mark Schaake, Wayne Stewart, and the members of the Seattle
4D SIG provided invaluable help and support in bringing Foundation 5 to market. And, of course, without
Dave Batton there would be no Foundation Shell. Thanks to you all.

What Foundation Is Not

No shell can be all things to all people. Not everything you have ever wanted in a shell is going to be in
Foundation, since your needs are different from those of other developers. We recommend that you try
to make Foundation into the perfect shell for your needs. Add features where you need them. Pull out
the stuff you never use. And if you want to, modify the behavior of Foundation’s methods or the look of
Foundation’s forms.

Keep in mind that Foundation is not designed to teach you how to write 4D databases. However, you may
be able to learn quite a bit from examining the code and reading the comments in Foundation’s methods.

System Requirements

Computer
Foundation can be used on any computer that will support 4th Dimension v11.4 SQL.

Operating System
Foundation supports all system software that is compatible with 4th Dimension v11.4 SQL.

4th Dimension
To use Foundation 5, you will need either 4th Dimension v11.4 SQL, or 4D Server v11.4 SQL.

Compiling Your Database
Because of the complexity of the Foundation code, we highly recommend that you compile any databases
created with it. Foundation is compiler ready, and includes complete compiler definition methods.

Developer Requirements

4th Dimension

If you have never completed a database that works in 4th Dimension’s Custom Menus environment, you
are probably not ready to tackle Foundation. You should feel comfortable with creating tables, fields, and
forms. If you cannot do this, or find your way around in the Custom Menus environment, put Foundation
aside for a while. Work through the 4th Dimension Tutorials before trying to use Foundation.

Foundation Developer Reference 14 Infroduction

To work with Foundation you will need to be able to create form methods, assign menu bars to forms,
and modify an existing project method.

Pointers

Once you are up and running with Foundation, you will want to make sure you have at least a basic
understanding of pointers. Many of Foundation’s generic methods rely on pointers. The more you know
about pointers, the more value you will get out of this product and 4D in general.

Multiple Processes

Foundation is designed to use the multiple process capabilities of 4D. You do not need to know
everything about multiple processes, but the more you know the easier it will be to take advantage of
Foundation.

Database Design

One thing we would not even try to cover in this documentation is how to design a database. Read the
documentation that comes with 4th Dimension, or get one of the many good books that are available. We
also highly recommend joining a 4D users group in your area.

Foundation Support

Support is available from the Foundation web site <http://www.FoundationShell.com/support.php/>.

Technical Notes

On occasion we will post technical notes on our Web site. These answer commonly asked questions about
Foundation, and describe components and example databases. We will occasionally publish technical
notes from other Foundation users, too.

Components

We also produce additional components to add functionality to any database created with Foundation.
Components may be provided for something as simple as a printout, or as complicated as an electronic
mail system. We encourage you to tell us what kind of add-ons you would like us to provide. We will do
our best to create components based on the most popular requests.

Shell Updates

Expect to see the Foundation shell updated on a regular basis. Updates may be needed to remain
compatible with future versions of 4th Dimension, to fix bugs, or make improvements. You will be able to
download minor Foundation updates at no cost for one year.

Along with any changes to Foundation, we will supply you with detailed information on what has changed
and why. This will allow you to update your existing databases that are based on Foundation.

Foundation Developer Reference 15 Infroduction

Bug Reports

‘Bug’ is not a dirty word with us. From time to time somebody will discover a problem in Foundation.
When this happens, we will make a special effort to let you know about the problem and how to fix it.

User Submissions

We get lots of great ideas from other Foundation owners. So we will post these examples and techniques
on our Web site. If you have got something cool to share, please send it to us! Do check out the
Foundation Forum <http://www.FoundationShell.com/forum/>, where Foundation users congregate to
share ideas, issues, and help each other out.

Foundation Developer Reference 16 Infroduction

About Foundation

Athough it is designed to be easy to use, Foundation is a complex product. It consists of components,
plugins, and more. Before we show you how to use it, this chapter will help you understand how
Foundation was designed, and how it is intended to be used.

Foundation Terminology

First, let us clear up some terminology.

Foundation

“Foundation” is the name of the entire product you are using now. There is no specific file or application
or utility named Foundation. Foundation primarily consists of the Foundation Components, the
Foundation Demo database, and the Foundation Extras plugin.

Foundation Developer Reference 7 About Foundation

Foundation Shell

The Foundation Shell is a 4D structure file designed to be used as a starting point for creating new
databases. It consists of about 2 menu bars, 4 tables, 7 forms, and 250 project methods. You can just add
additional tables and fields to this database, create input and output forms, and then the database is ready
to be used in 4D’s Custom Menus environment.

The above numbers of forms and methods are slightly misleading. These are just the ones you can see.
The Foundation Shell has been created using the Foundation Components. So in addition to the 20 or so
public methods (methods you can modify) and approximately 230 protected methods (methods you can
call, but cannot modify) in the shell, there are a couple hundred more private methods and more than a
dozen private forms you cannot see.

Foundation Sub-Components

Foundation 5 now ships as a single component. Previously, Foundation was made up of several
components. Those components will now be referred to as sub-components. These are self-contained
groups of 4D methods, forms, menu bars, and pictures that can be copied into any 4D v11 database.
Whenever an update to Foundation is released, the update can be easily installed into a Foundation Shell
based database to fix bugs or add new features.

All of the Foundation sub-components require the Foundation General sub-component (Fnd_Gen). This
component is the "engine" used by all of the other sub-components. It includes the routines necessary to
bind the sub-components together in a project. The General sub-component also includes many generic
routines, so these routines do not need to be duplicated inside of each individual sub-component.

Foundation Exiras Plugin

There are just a few things that cannot be done with 4D code that Foundation requires. So the
Foundation Extras plugin contains these special routines. The plugin is available for both Macintosh and
Windows, and the new bundle format introduced with 4D 2004.

The Foundation Extras plugin is required by the Foundation General component (Fnd_Gen), so it must
be installed to use any of the Foundation components.

Demo Mode

If you are using the Foundation demo, you have a compiled version of the Foundation Shell component
that is available as source code in the paid version of Foundation. You will receive an unlock code to turn
off the annoying message you see when you first launch Foundation after purchase.

Foundation Developer Reference 18 About Foundation

This means that any database you create with the Foundation Shell demo can become fully functional
when you purchase Foundation. Without the unlock code, any database created with the Foundation
Shell or any database in which you install the Foundation Components will display a demo message when
it is launched, and will time-out after 30 minutes (10 minutes, if compiled).

When you purchase Foundation, you will get an unlock code for the shell and the components.

Organization

It Is Just a Lot of 4D Code

We hate to admit it, but there is really nothing special about Foundation. It is simply a collection of 4D
methods, forms, and pictures, just like you can create yourself with 4D. It is designed to provide you
with the tools to help you deliver databases that run in 4D’s Custom Menus environment, SO you can

have full control over the interface. It is designed to display tables and records, just like 4D’s former User
environment.

There are some significant differences between the Foundation interface and 4D’s User environment. For
example, Foundation displays each table in its own window. It displays each record in its own window. It
also offers a simplified Find dialog, and platform specific interface elements.

Foundation Developer Reference 19 About Foundation

The only thing that is missing is the tables and fields that the end user will work with. That is where you
come in.

Component Architecture

Okay, so there is something about Foundation that is different from your structure files. We have created
it by combining nearly 20 components. Of course, you could do this with any of your databases, but if
your are like most 4D developers, you probably have not bothered to do this.

Components are bundles of 4D objects (methods, forms, style sheets, pictures, etc.) that are grouped
together in one 4D structure file. You can install a component by copying it into the components folder
next to your 4D structure file. The idea is that by installing a component you can easily add significant new
functionality to your database. It is kind of like using a plugin, but it is written in 4D code rather than C or
C++.

Hooks

The Foundation Shell includes more than a dozen public methods. You can, if you need to, modify the
code in these methods to modify the shell’s default behavior. These are referred to as “hooks,” since they
let you add code that “hooks into” the Foundation code.

If we make changes to a hook, we will document the change with the updated component so you can
modify your hook directly in 4D.

No Data File Required

Unlike other shells, Foundation does not require a special data file. You, or your end users, can create a
new data file, and it will work perfectly with Foundation.

Parlez-vous francais?

Foundation 5 has been designed so that it can easily be localized for other languages. Although all of

the menus, buttons and labels are displayed in English for the developer, this is just to make it easier to
work with during development. At runtime, the text for all of these items are pulled from localization

data stored as 4D lists in the structure file. Foundation can just as easily use French or German as it can
English. And it is easy for you to add to this localization data to localize Foundation for any other language
by modifying the components in Foundation.

Compiling

All Foundation methods are designed so they can be compiled with either the “All Variables are Typed” or
“Type the variables” option selected in 4D’s Compiler Preferences dialog.

We highly recommend compiling your Foundation Shell based databases before delivering them to the
end user. Some Foundation routines behave differently depending on whether or not the database has
been compiled. Basically, Foundation assumes that if the database is not compiled, it is being tested by
the developer, rather than being used by an end user.

Foundation Developer Reference 20 About Foundation

Using Foundation

Foundation Components

If you are starting a new project, you would not need to install the Foundation components first.
However, you may want to install Foundation into your Components folder before you start to take
advantage of the Foundation shell benefits.

The components can also be installed into any of your existing projects that were not developed using
the Foundation Shell. You can also turn an existing project into a full Foundation Shell-style project
by installing all of the required Foundation Components, and by making a few simple changes to your
structure file. This process is described in the "Starting Fresh with Foundation" chapter.

Naming Conventions

All of the Foundation database object names are prefixed with “Fnd_". This prevents naming conflicts
with your code and with other non-Foundation components.

You should never create any database objects (forms, tables, methods, variables, etc.) in your database
structure using a name that beings with “Fnd_” when working with the Foundation Shell or in a database
that contains Foundation Components. This may cause runtime problems, and will prevent you from
installing new and updated Foundation Components. You should prefix object names with “Fnd_” when
modifying a Foundation component.

Foundation also uses a variable naming convention. You will never see any of Foundation’s variables
in the Foundation Shell — these variable names are visible only when working with the component. All
variables used in Foundation end with an underscore and a letter that indicates the variable type:

Variable Type

VariableName_t C_TEXT

VariableName_s (_STRING (rarely used)
VariableName_i C_LONGINT (C_INTEGER is not used)
VariableName_r (_REAL

VariableName_b (_BOOLEAN

VariableName_blob (_BLOB

VariableName_pir (_POINTER

VariableName_pic (_PICTURE

VariableName_at ARRAY TEXT

VariableName_as ARRAY STRING (rarely used)
VariableName_ai ARRAY INTEGER or ARRAY LONGINT
VariableName_ar ARRAY REAL

VariableName_ab ARRAY BOOLEAN
VariableName_aptr ARRAY POINTER
VariableName_apic ARRAY PICTURE

Foundation Developer Reference 2 About Foundation

Upgrading to Foundation 5

4D v11 SQL implements a dramatically different (and better) component system than previous releases
of 4D. Rather than installing components with 4D Insider, component source code is now left in the
source database, and this structure file, either interpreted or compiled, is dropped into a folder named
“Components” at the same level as the host database’s structure file.

Because of this significant change, 4D database structures with components installed directly into
the structure file cannot be opened by 4D v11 SQL. The old components must first be removed, then
replaced with updated components that are designed to work with the new component architecture.

The Foundation components have been upgraded to work with 4D v11 SQL, and we are calling them
Foundation 5. Although they are designed to look and behave similar to the Foundation 4 components,
internally many changes had to be made to work within the limitations imposed by the new component
architecture.

This chapter describes the steps necessary to upgrade a Foundation 4-based structure file to work with 4D
v11 SQL and Foundation 5. It does not cover creating new databases with Foundation 5.

Foundation Developer Reference 22 Upgrading

About Foundation 5

Many things have changed with the new component architecture in 4D v11. For example, there is no
longer such a thing as a public method. Also, components can no longer access the lists, forms, or
menus of the host database.

Hook Methods

Foundation 5 still uses hooks just like Foundation 4 did, but with some important differences.

The names of the hook methods has changed. Wherever “ aa " occurred in the name of a hook, it
has been replaced with “ Hook .” So, for example, the Fnd_aa_Shell_Find hook is now named
Fnd_Hook_Shell_Find.

This was done for two reasons. First, the usefulness of having the hooks sort to the top of the list of
methods in the Explorer window is no longer important, since all of the shared component methods are
now listed in another area of the list. Second, by changing the names of the hooks the upgrade process
is simplified.

You will find 22 of these hook methods in the Foundation Example database called Product Sales. Copy
these 22 hook methods to your Host database, if any of them are missing.

Host Methods

To work around some of these limitations, Foundation may ask you, depending on the components you
are using, for permission to create some new shared methods in your structure file. The names of these
methods will start with “Fnd_Host .

These methods are created automatically by using the AP Create method command available in

4D Pack. 4D Pack may have been automatically added to your copy of 4D v11 during installation, so you
may not need to worry about adding this plugin to your Plugins folder. However, you should check to
make sure this plugin is availble to 4D before trying to work with the Foundation 5 components.

The necessary “Compiler " methods are also automatically generated. If you delete or rename a host
method, Foundation will ask again for permission to create the method. But you should always delete
both the host method and its associated compiler method at the same time, since Foundation will
attempt to create both of them.

Special Note regarding 4D Server:

These routines for creating hook and host methods will not set the Shared by components and host
database attribute for methods, if you run them with 4D Server. Make sure you are running in Single
User 4D to set the Shared by component attribute for these methods.

Foundation Developer Reference 23 Upgrading

Project Forms

Unlike previous versions of 4D, 4D v11 SQL forms do not need to be associated with a table. These forms
are referred to as project forms.

Components can no longer use table forms, so all Foundation forms are now project forms.

If you have created custom Startup Dialog or About Box forms, you will need to change these to project
forms. This is easily done by dragging the form name in the Explorer window to the Project Forms label.

4D Version

This version of the Foundation components has been tested with 4D v11.4. You will probably have
problems with earlier versions, and things might work even better with later versions.

Broken Parts
Unfortunately, not everything that was available in Foundation 4 is working in this release of Foundation
5. These features will return in future updates.
Localization

The Localization Editor is not yet functional. And no testing has been done to ensure that the Foundation
components work properly when localized with non-English languages. Your localizations should work,
but we are not making any promises.

Menus

4D v11 SQL Release 2 switches from Foundation’s procedurally created menu bar back to Menu Bar #1
after the On Startup database method completes. So Foundation posts a keyboard event to trigger a
menu item to switch back the correct menu at the end of the startup process. This works fairly well, but
unfortunately you will still see the wrong menu bar if all windows are closed.

In 4D v11 SQL Release 2, the Quit and Preferences menu items are not functional if they are
automatically moved to their proper positions on Mac OS X. So you will find the Quit menu item under
the File menu and the Preferences menu item under the Edit menu on Mac OS X.

Missing

The Foundation Mail component has not yet been updated for 4D v11 SQL.

Intel Macs

Foundation Extras has been updated to a universal binary, so it will allow your database to run in native
mode on Intel-based Macs.

Foundation Developer Reference 24 Upgrading

Upgrading From a Version 5 Database to New Version 5 of Foundation

To upgrade from Foundation 5 to a newer version of Foundation 5, simply replace the Fnd_All.4DB
component in your components folder next to your structure file. If you have modified any methods or
layouts in the Fnd_All.4DB, you will have to make sure you marry your version with the new version. It is
recommended that you not modify Fnd _AlL4DB for this reason.

Upgrading Your Foundation Version 4 Structure

Backup the Database
Make a backup of your structure file and data file.

No, really. Right now. Before continuing.

Update Obsolete Method Calls

Search your structure for any calls to the obsolete Foundation Window calls that start with
“Fnd_Wnd_Set.” The word “Set” has been removed from these calls. For example, Fnd_Wnd_SetTitle is
now Fnd_Whnd_Title. The older, obsolete method calls are not available in Foundation 5.

Make Copies of the Public Objects

In a moment, we will use 4D Insider to remove all of the Foundation 4 components from the structure
file. But this will also remove any hooks you may have modified. It will also remove the preferences form.
So first we need to create copies of these objects.

NOTE: It is possible to rename the existing hooks (although it should not be, since they belong to
the component). Do not simply rename the hooks. They will still be deleted when the component is
removed. You must create new methods and copy the contents of your hooks into the new methods.

Duplicate the Hooks

Launch the database with the older version of 4D. Take a look at each of the Foundation hook methods
(they start with “Fnd_aa”) and for any of them that you have modified, create a copy of it, replacing

“ aa_ " (or* aaa "in the case of the Fnd_aaa_Shell_Setup method) with “ Hook .” So, for example,
the copy of the Fnd_aaa_Shell_Setup method will be named Fnd_Hook_Shell_Setup, and the copy
of the Fnd_aa_List_SetEditableLists method will be named Fnd_Hook_List_SetEditableLists.

This technique causes two of the new method names to exceed 4D’s 31 character limit so rename these
files as shown here:

Fnd_aa_Shell_NavigationPalette becomes Fnd_Hook_Shell_NavPalette

Fnd_aa_Shell_InitializePlugins becomes Fnd_Hook_Shell_InitPlugins

Foundation Developer Reference 25 Upgrading

Duplicate the Preferences Form

Create a new form named “Preferences.” It does not matter which table you assign it to—we will change
it to a project form (no related table) after upgrading to 4D v11 SQL. Copy all of the form objects from
the Fnd_Pref_Preferences form to this new form. Also copy the form method to the new form. Set the
form size to match the size of the Fnd_Pref_Preferences form. Select the Fixed Width checkbox in
the Property List, and make sure the necessary form events are selected.

Duplicate the Registration Forms

If you are using the Foundation Registration component, and you have modified either the
Reg_DemoDialog or Reg_RegisterDialog forms, create a new form and copy the contents to the new
forms. As with the Preferences form, it does not matter which table you assign it to. Do not forget to copy
the form methods, also.

Remove the Components

Quit 4D and open the structure with 4D Insider. Remove all of the components. Even non-Foundation
components must be removed. 4D v11 SQL will not convert a database that contains old-style
components. Quit 4D Insider.

Upgrade Foundation Extras

If your database has a Mac4DX or Win4DX folder, rename this folder “Plugins.” Remove Foundation Extras
from this folder and replace it with the Foundation Extras 5.0 plugin. An alias/shortcut to the plugin will
also work.

Install the Components

Copy the Components folder to the folder that contains your database structure. Aliases/shortcuts to the
components will also work.

Upgrade to 4D v11 SQL

Open the database with 4D v11 SQL. Click through the conversion dialog. An error will occur during
startup when one of the missing Foundation components is called. Click Abort.

Unicode

Open the 4D Preferences window. Select the Application/Compatibility area. Select the
Unicode mode checkbox. Click OK to save the change.

Share the Hook Methods

Go to the design environment and, for each of the Hook methods, select the Shared by components
and host database checkbox in the Method Properties window. The easiest way to do this is to select

Foundation Developer Reference 26 Upgrading

the Batch Setting of Attributes command from the gear menu in the Explorer window. Enter
“Fnd_Hook(@” in the field at the top, then select Shared by components and host database from
the menu. Click True, then click the Apply button. Make sure you are running in Single User 4D to set
the Shared by component attribute for these methods.

Convert Table Forms to Project Forms

In the Explorer window, go to the Forms list, then find the Preferences form you created earlier and
drag it up to the Project Forms label. This will move the form.

If you are using the Registration component, drag the Reg_DemoDialog and Reg_RegistrationDialog
forms to the Project Forms label.

If you created custom Startup or About Box forms, find them and drag them to the Project Forms list
too.

If you have a [Fnd_Forms] table, and it no longer contains any forms, you can delete this table.

Fnd_Dlg_Request

Fnd_DIg_Request no longer returns the value entered by the user. You must now call
Fnd_DIg_GetRequest to get this:

Fnd_Dlg_Reqguest ("Enter password:")

If (OK=1)
$result_t:=Fnd_Dlg_GetRequest
End if

Fnd_Gen_Get4DString

Fnd_Gen_Get4DString has been removed. If you used this method, replace these with calls to
Fnd_Gen_GetString and add “Fnd_Gen” as the first parameter. For example:

Fnd_Gen_Get4DString("Stop")

becomes:
Fnd_Gen_GetString("Fnd_Gen";"Stop")

If you were using a lookup code of “Don't Save” you will need to change it to “DontSave.”

Fnd_Art

Any calls to Fnd_Art_SetAboutForm and Fnd_Art_SetStartupDialogForm must be modified to pass
just the form name. The form must now be a project form, not a table form.

Style Sheets

If you assigned any of Foundation’s style sheets to your form objects, those objects no longer have style
sheets. You will need to recreate the style sheets and reassign them to the form objects.

Foundation Developer Reference 27 Upgrading

Fnd_Objects

From the included Fnd_Objects database, drag the Fnd_IO_InputForm and Fnd_Tlbr_Toolbar forms
to your project (you will need two copies of 4D v11 SQL running to do this). This will also move some
pictures and style sheets to your project.

From the same database, drag the Compiler_Fnd_IO and Compiler_Fnd_Tlbr project methods to
your database.

Open each of your input forms and set it to inherit the Fnd_lO_InputForm project form.

Open each of your output forms and set it to inherit the Fnd_Tlbr_Toolbar form.

Menu Bar

Select Menus in the Toolbox. You should still have a Fnd_Shell menu. In this menu, make sure there is
an item (it is probably labeled “Start Foundation”) that calls the Fnd_Shell_OnStartup method, and
has Command-S (or Control-S on Windows) assigned as the shortcut. This is a temporary work-around
required because of a bug in 4D v11 SQL. This has been reported to 4D and, hopefully, this step will not
be necessary with the 11.4 release.

Compile

Try compiling. You may get errors for the variables on the Preferences form. If so, add these compiler
directives to your project in a “Compiler " method.

If the compiler finds any methods that start with “Fnd_Wnd_Set,” update these commands by removing
the word “Set” from the method name. These commands were made obsolete about a year ago, and are
no longer supported. For example, Fnd_Wnd_SetPosition has been replaced by Fnd_Wnd_Position.

Hopefully, now your database will compile. Do not try to use it yet, just make sure it compiles, and fix any
remaining compiler errors.

Delete the Resource File

Quit 4D. Locate the .rsr file. This is no longer needed and can be deleted.

Launch

Launch the database again. This time, Foundation will then ask you for permission to create methods
named Fnd_Host_ExecuteFormula and Fnd_Host_GetFormProperties. Click the Add Method
button in each of these dialogs. Associated compiler methods will be created, too.

Your database should now startup normally. If menu bar 2 does not appear (this might happen if you do
not display the navigation palette at startup), select Start Foundation from the File menu.

Foundation Developer Reference 28 Upgrading

Starting Fresh with Foundation

N o matter how much experience you have with 4th Dimension, you will want to read this chapter to
learn how to create a database with Foundation. Then you can decide whether you want to keep going on
your own, or finish reading this manual.

Setup

Foundation 5 consists of a single structure file. It is named Fnd_AlL.4DB. The Fnd_All.4DB is the 4D
Component database that you will place inside the Components folder next to your 4D structure file. To
create a new database from scratch, start by launching 4D and create a new database. Quit 4D, and just
copy Fnd_All4DB to your Components folder next to your brand new structure file. To add Foundation
to an existing structure, do the same thing, copy Fnd_All.4DB to your Components folder. See the
Chapter called Messing with Components for more information on dealing with 4D Components.

In addition, you will need to copy the Foundation Extras plugin named Extras.bundle to your Plugins
folder next to your 4D structure.

Foundation Developer Reference 29 Starting Fresh with Foundation

After the startup message has closed, you may select Quit (Macintosh) or Exit (Windows) from the

File menu. Because Foundation defaults to development mode (not to be confused with 4D's Design
Environment), it will not really quit 4D. Instead the menu bar will change and you may select Return to
Design mode from the Mode menu.

Create the Tables, Fields and Forms

To create a database with Foundation, start off just like you would to create a database normally in 4D.
Then you just need to make a few minor changes. Begin with a simple structure so that you can quickly
get the hang of Foundation. Create a few tables with a few fields each. Create an input and output form
for each table that your users will see in the Custom Environment. Any tables or fields marked as invisible
will not be displayed in the Custom Menus environment by Foundation. Any searchable/sortable fields will
automatically be displayed in Foundation’s Find Dialog and Sort Dialog.

Create the Forms

First, copy the Fnd_IO_InputForm and Fnd_Tlbr Toolbar forms from the Product Sales.4DB. You will
probably want to copy these to your Project Forms area, rather than to a specific table.

Foundation requires an input and output form for each visible table. You should name the input forms
“Input” and the output forms should be named “Output.”

The Product Sales.4DB example database contains form templates to help you create input and output
forms. Be sure to set the size using 4D’s Form Properties dialog, so Foundation can figure out what
window sizes to use.

Display 4D’s Property List, and locate the “Inherited Form Name” setting. Select “Fnd_IO_InputForm”
as the Inherited Form Name for your input forms, and select “Fnd_TIbr_Toolbar” as the Inherited Form
Name for your output forms.

Set Up the Forms

To get your forms working properly in the Custom Menus environment, you will need to do a few more
things:

1. Create a form method for each input and output form (just type Command-option-K (Macintosh) or
Ctrl-option-K (Windows). The input form method should call Foundation’s Fnd_IO_InputFormMethod
and the output form should call Foundation’s Fnd_IO_OutputFormMethod method.

2. For output forms, set the Header, Detail, Break 0, and Footer lines using the guides provided on the
form template. The Foundation Toolbar extends down to 76 pixels, so your objects should be below 77
pixels. Header line should be at 93 pixels, Detail, Break and Footer lines should be at 111 pixels, if you are
using our templates.

3. Using the Property List palette, associate the form with the “Fnd_Shell” menu bar, and select the Active
Menu Bar check box. Then select "None" from the Associate Menu Bar.

Foundation Developer Reference 30 Starting Fresh with Foundation

4. Also in the Property List palette, set the form’s events to handle the events listed on each template.

Input Form Events checked:

Output Form Events checked:

On Load On Load
On Validate On Unload
On Activate On Activate
On Close Box On Deactivate
On Outside Call On Close Box
On Clicked On Outside Call
On Data Change On Clicked
On Resize On Double Clicked
On Resize
On Header
On Display Detail

5. Set the window size as desired. Foundation will use the form size as the default size for the window.
Foundation is designed to work properly with resizable input and output windows.

You can also set the minimum window width and height as desired.

Try compiling. You may get errors for the variables on the Preferences form. If so, add these compiler
directives to your project in a “Compiler " method. If methods from Components do not tokenize or
Syntax check says the methods do not exist, force retokenizing with Command-Shift-Enter.

Launch the database again. This time, Foundation will ask you for permission to create methods named
Fnd_Host_ExecuteFormula and Fnd_Host_GetFormProperties. Click the Add Method button

in each of these dialogs. Associated compiler methods will also be created. Your database should now
startup normally. If menu bar 2 does not appear (this might happen if you do not display the navigation
palette at startup), select Start Foundation from the File menu. Be sure you have a menu item added to
your Menu Bar No 1, that contains a Start Foundation item that calls Fnd_Shell_OnStartup and has the
shortcut of Command-S enabled.

(This is a BIG ONE) - If Methods inside Execute Method are not recognized, do the following. Make sure
any Fnd Host_* methods have the “Shared by components and host database” option set, in the Method
properties. From Execute Method command reference: If you call this command from a component and
pass a method name belonging to the host database in methodName (or vice versa), the method must
have been shared (“Shared by components and host database” option, in the Method properties).

That is all you need to do to begin working in the Custom Menus environment. However, you will
probably want to go into the Fnd_Hook_Shell_Setup method to customize your database. Your
database should work properly now. You can switch to the Custom Menus environment by selecting Test
Application from the Run Menu, and select Start Foundation from the File menu.

Customize It

Now that you have all of the basics working, you will want to go into the
Fnd_Hook_Shell_Setup method to customize your database. This public method contains four calls to
the Fnd_GenSetDatabaselnfo command.

Foundation Developer Reference 31 Starting Fresh with Foundation

Modify these four calls with your own custom information:

Fnd_Gen_SetDatabaselnfo ("DatabaseName";"A Great Database Built with Foundation")
Fnd_Gen_SetDatabaselnfo ("DatabaseVersion";"1.0 beta 1")

Fnd_Gen_SetDatabaselnfo ("DatabaseCopyright";"Copyright ©2009 Your Company Name")
Fnd_Gen_SetDatabaselInfo ("DatabaseURL";"http://www.YourCompanyURL.com/")

DatabaseName

Pass the name of your database to this method. The name you enter here will be shown in the Startup
Message when the database is launched and will also be displayed in the Custom About Box. The About
menu item will display this name.

This name will also be used when creating the local preferences file. Each database you create should be
given a unique name so that it does not overwrite the preference file of another database.

DatabaseVersion

This variable is used to display your database’s version number to the end user in the Startup Message
and the Custom About Box . It can be in any format you want, since it is simply for display in the Startup
Message and Custom About Box dialogs.

DatabaseCopyright

Place a copyright statement here. This information will be displayed in the Custom About Box and in the
Startup Message . This string can contain up to two lines separated by a carriage return, although only the
first will be displayed in the Startup Message.

DatabaseURL

Place a full Web page URL (including the “http://” part) here. This will be displayed in the Custom About
Box, and users can click on it to get to display the page in their browser.

Try It

Once you have the Fnd Hook Shell Setup method customized, you are ready to try it out. Select Test
Application from the Run menu, and select Start Foundation from the File menu. Foundation will run
through the startup process again, this time displaying the name of your database in the Startup Message.

Here are just a few of the many things that Foundation will set up for you, based on the tables and fields
you have created, and the changes you make to the Fnd Hook Shell Setup method:

* Navigation Palette

The first thing you will probably notice is that the Navigation Palette displays each of the visible tables you
have created. Clicking on a table name in this palette will open a window to display the records in that
table using the input and output forms you created. You can modify this palette using the Fnd Hook
Shell NavigationPalette hook.

Foundation Developer Reference 32 Starting Fresh with Foundation

* Custom About Box

The About menu item under the Apple (@) menu (Macintosh) or under the Help menu (Windows)
displays the name of your database. Notice that the window includes your URL, and clicking on it will
launch your browser and open that web page.

* Find Dialog

After you have opened a table window (by clicking a button on the Navigation Palette or selecting Open
from the File menu) select Find from the Select menu. All of the visible, searchable fields from the current
table are listed. If you would like to offer the end user a different selection of fields to query, modify the
Fnd_Hook Shell Find method.

* Sort Dialog

Just like Find Dialog , the Sort Dialog (also available from the Select menu) will display all of the visible,
sortable fields from the current table. If you would like a different selection of fields presented to the end
user, modify the Fnd_Hook_Shell Sort method.

When you are ready to move back to the Design environment, select Quit or Exit from the File menu,
then select Return to Design mode from the Mode menu. Or you can just click on one of the Design
environment windows to bring it to the front.

Still More Control

Take a look at the methods in Foundation that have names beginning with “Fnd_Hook .” You can
customize these methods to alter default sorting, selection filtering, and much more. Read each method’s
comments for guidance. If you need more information, each of these methods is documented in the
Component chapters of this manual that follow.

Foundation Developer Reference 33 Starting Fresh with Foundation

Messing with Components

N o matter how much experience you have with 4th Dimension, you will want to read this chapter to
learn how to deal with 4D Components.

Foundation 5 has been completely revised to comply with 4D v11 SQL's new component architecture.
In previous versions of 4D, components were created and installed using a separate program called 4D
Insider. Starting with v11, components are now just a special kind of 4D structure file (cannot contain
tables) and installed by simply copying them to the Components folder next to your 4D structure file.

What this means for Foundation users is a great simplification in installation, use and upgrading. If you
never modify any part of Foundation (Fnd_All.DB4), an upgrade will mean a simple replacement of a
single file (Fnd_All.DB4) in your Components folder.

Now that 4D Insider is no longer with us, all of its issues are gone as well. Many of us struggled with 4D
Insider and the many quirks it had in upgrading components. I know my 4D life will be much simpler with
4D v11 and components. Thanks, 4D!

What 4D Documentation Should | Read?

All of it? Someday, you should, but to use Foundation, you just need to know how to create tables, fields,
forms and a few methods. You do not need to know anything about 4D components, but if you want to

Foundation Developer Reference 34 Messing with Components

learn about them, Foundation is a good starting point. Please read the 4D v11 Upgrade and v11 Design

Reference manuals for complete details on using Components in 4D.

Foundation is now shipping as a single component, but it has been written in a modular fashion so

that you can take certain parts of Foundation and use them independently of the full Foundation Shell.
There are some dependencies between the Foundation sub-components (for lack of a better term). For
example, Fnd _Gen is used by just about all the other Foundation sub-components and, therefore, is

required.

Sub-component Dependencies

Gary Boudreaux <garybx(@gmail.com> has kindly laid out a complete list of the dependencies:

Fnd_Art

Fnd_Gen
Fnd_Wnd

Fnd_Bttn

Fnd_Gen
Fnd_Cmpt

Fnd_Dlg
Fnd_Gen
Fnd_List
Fnd_Pref
Fnd_Wnd

Fnd_Data

Fnd_Gen
Fnd_Text

Fnd_Date

Fnd_Gen
Fnd_Dict

Fnd_Gen
Fnd_Dlg

Fnd_Gen
Fnd_Wnd

Fnd_Find

Fnd_Gen
Fnd_Wnd

Fnd_Gen

None
Fnd_I0

Fnd_Dlg
Fnd_Gen
Fnd_Loc
Fnd_Menu
Fnd_Pref

Foundation Developer Reference 35

Messing with Components

Fnd_Rec
Fnd_Tlbr
Fnd_VS

Fnd_Wnd

Fnd_List

Fnd_Dlg
Fnd_Gen
Fnd_Wnd

Fnd_Loc

Fnd_Gen
Fnd_Log

None

Fnd_Menu
Fnd_Gen
Fnd_Loc

Fnd_Msg

Fnd_Gen
Fnd_Nav

Fnd_Gen

Fnd_Pref

Fnd_Gen
Fnd_Prnt

Fnd_Gen
Fnd_Pswd

Fnd_Gen

Fnd_Rec

Fnd_Dlg
Fnd_Gen
Fnd_Wnd

Fnd_Reg

Fnd_Gen
Fnd_Text
Fnd_Wnd

Fnd_RegG

Fnd_Gen
Fnd_Text

Fnd_Shell

Fnd_Art
Fnd_Dlg
Fnd_Gen
Fnd_l0
Fnd_List
Fnd_Loc
Fnd_Menu
Fnd_Pref
Fnd_Rec
Fnd_VS
Fnd_Wnd

Foundation Developer Reference 36 Messing with Components

Fnd_Gen
Fnd_Wnd

Fnd_Dlg
Fnd_Gen
Fnd_Wnd

Fnd_Gen

Fnd_Btin
Fnd_Gen

Fnd_VS
Fnd_Gen

Fnd_Gen

Fnd_Sort

Fnd_SqNo

Fnd_Text

Fnd_Tlbr

Fnd_Wnd

The following is a list of sub-components in proper order to make the compiler happy (there are

groupings of them that the order can be mixed, but this particular order should work):

Fnd_Gen
Fnd_Log
Fnd_Wnd
Fnd_Text
Fnd_Art
Fnd_Btin
Fnd_Data
Fnd_Date
Fnd_Dict
Fnd_Dlg
Fnd_Find
Fnd_List
Fnd_Loc
Fnd_Menu
Fnd_Msg
Fnd_Nav
Fnd_Pref
Fnd_Prnt
Fnd_Pswd
Fnd_Rec
Fnd_Reg
Fnd_RegG
Fnd_Sort
Fnd_SqNo
Fnd_Tlbr
Fnd_VS
Fnd_Cmpt
Fnd_l0
Fnd_Shell

Foundation Developer Reference

3

Messing with Components

Art Component
(Fnd_Art)

’:[;16 Foundation Art component is responsible for displaying the startup dialog and About box in the
Foundation Shell. It is called the Art component because it does not really serve any functional purpose
other than to make your application look good.

The Art component includes default forms for the startup dialog. You can change the look of the startup
dialog by calling Fnd_Art_SetStartupDialogForm to tell the component to use your own form rather
than the built-in form.

If you pass an empty form name to the Fnd_Art_SetStartupDialogForm method, the startup dialog
will not be displayed when the Shell calls Fnd_Art_StartupDialog. You must still pass a pointer to the
Fnd_Art_SetStartupDialogForm method, but it will be ignored.

The Art component also includes a default form for the About box. You can change the look of the About
box by calling Fnd_Art_SetAboutForm to specify your own form.

Foundation Developer Reference 38 Art Component

Language Reference

Here are the routines in Foundation’s Art component:

Fnd_Art_About Fnd_Art_StartupDialog
Fnd_Art_Info Fnd_Art_StartupDialogClose
Fnd_Art_SetAboutForm Fnd_Art_StartupDialogFormMethod

Fnd_Art_SetStartupDialogForm

Fnd_Art_About

Fnd_Art_About

Parameter Type Description
No parameters required.

The Fnd_Art_About routine displays the About Box dialog in a new process.

If you are using the Foundation Shell, this routine is automatically installed as the About Box
routine. The information displayed in this window is obtained from the values set up in the
Fnd_Hook_Shell_Setup hook.

If you are not using the Foundation Shell, use Fnd_Gen_SetDatabaselnfo method to configure the
information that will be displayed in this dialog. Then use 4D's SET ABOUT command to install this
method as your application's About Box handler:

Foundation Developer Reference 39 Art Component

Fnd_Gen_SetDatabaselnfo ("NAME";"Super Accounting Program")
Fnd_Gen_SetDatabaselInfo ("VERSION";"5.0.7 beta 2")

Fnd_Gen_SetDatabaselnfo ("COPYRIGHT";"Copyright ©2006 Amazing Company, Inc.")
Fnd_Gen_SetDatabaselnfo ("URL";"http://www.AmazingCompany.com/")

SET ABOUT("About "+Fnd_Gen_GetDatabaselInfo ("NAME")+"...";"Fnd_Art_About")

Use Fnd_Art_SetAboutForm to use a custom form, rather than Foundation’s default About form, to
display when this method is called.

Fnd_Art_Info

Fnd_Ari_Info (info requested) = Text

Parameter Type Description
info requested Text Info desired
Function Result Text Response

This function returns the requested information about the Art component.

$version_t:=Fnd_Art_Info ("version")

The Fnd_Art_Info method will respond to these requests:

Request Response Example
name The component’s full name Foundation Art
version The component's version number 4.0.5 beta 4

This routine can also be called using the Fnd_Gen_Componentinfo method without first testing to see
if the component is installed:

$version_t:=Fnd_Gen_ComponentInfo ("Fnd_Art";"version")

See the Fnd_Gen_Componentinfo method for more information.

Foundation Developer Reference 40 Art Component

Fnd_Art_SetAboutForm

Fnd_Art_SetAboutForm (->table; form name)

Parameter Type Description
table Pointer Pointer to the form’s table
form nome Text Name of the form

The Fnd_Art_SetAboutForm routine installs a form to use instead of the default About form.
The window size of the About dialog is determined from the form size. The form should call the
Fnd_Gen_FormMethod method, and these events must be enabled:

On Activate

On Close Box
On Ouiside Call

Call this method from the On Startup database method just before the call to Fnd_Shell_OnStartup.
You can use the Fnd_Gen_GetDatabaselnfo method to get information to display in the form, such as
the database name, version number, copyright information, etc.

Fnd_Art_SetStartupDialogForm

Fnd_Art_SetStartupDialogForm (->table; form name)

Parameter Type Description
table Pointer Pointer to the form’s table
form nome Text Name of the form

Fnd_Art_SetStartupDialogForm allows the developer to specify the form to display during startup.

This routine installs a form to use instead of Foundation’s default startup form. The window
size of the startup dialog is determined from the form size. The form should call the
Fnd_Art_StartupDialogFormMethod method, and these events must be enabled:

On Load

On Timer
On Ouiside Call

You will need to call this method from the On Startup database method. Because this method does not
run when you quit and restart Foundation without actually quitting 4D, you will only see this custom form
the first time you open your database. However, your end users will always see your custom startup form.

You can use the Fnd_Gen_GetDatabaselnfo method to get information to display in the form, such as
the database name, version number, copyright information, etc.

Foundation Developer Reference 4] Art Component

Fnd_Art_StartupDialog

Fnd_Ari_StartupDialog

Parameter Type Description
No parameters required.

Fnd_Art_StartupDialog displays the startup window in a new process.

Product Sales

Version 4.0
Copyright ®2004 4D, Inc.

Close the dialog by calling Fnd_Art_StartupDialogClose method.

Fnd_Art_StartupDialog
" Run your database initialization code here.
Fnd_Art_StartupDialogClose

If Fnd_Art_StartupDialogClose does not get called (due to debugging or a code error), the startup
dialog will close automatically after 30 seconds. You can also close the standard dialog by clicking the
upper left corner of the dialog. There is a 10 pixel by 10 pixel invisible Cancel button hidden here.

Fnd_Art_StartupDialogClose

Fnd_Ari_StartupDialogClose

Parameter Type Description

No parameters required.

Fnd_Art_StartupDialogClose closes the startup message. This routine is safe to call even if no startup
message was displayed.

The startup dialog is designed to stay open for at least three seconds once it is displayed, so this
command may take a few seconds to execute as it waits for this three second delay. If the startup dialog
has been displayed for at least three seconds before calling Fnd_Art_StartupDialogClose, the window
will close immediately.

See the Fnd_Art_StartupDialog method for an example.

Foundation Developer Reference 4 Art Component

Fnd_Art_StartupDialogFormMethod

Fnd_Ari_StartupDialogFormMethod

Parameter Type Description
No parameters required.

The Fnd_Art_StartupDialogFormMethod routine must be called from the startup dialog’s form
method, even if a custom form is used.

Call this method from your custom startup dialog form (installed by calling
Fnd_Art_SetStartupDialogForm). To work properly, the form must have these events enabled:

On Load
On Ouiside Call
On Timer

Foundation Developer Reference 43 Art Component

Buttons Component
(Fnd_Bitn)

’:[;16 Foundation Buttons component creates the rollover buttons used by the
Foundation Toolbar component. These routines let you define an image and a text label, and then creates
a multi-part image that can be used to display a rollover button using 4D’s picture button form object.

The Foundation Buttons component is based on Mark Mitchenall’s free Rollover Component
<http://www.Mitchenall.com/> and is used with permission.

This component currently exists primarily to support the Toolbar component. When drawing toolbars, in
most cases it will be easier to use the Toolbar component directly.

Foundation Developer Reference 44 Buttons Component

4D Picture Buttons

4th Dimension offers Picture Button form objects. You can assign an image to this button type, and 4D
will use parts of the image to draw the button in various states. For example, to create a button that
looks like this on a form...

...you could create an image like this:

The image above includes each state of the button. The first is the “active” or “default” state, where the
button is enabled. The second is the “clicked” state, which is drawn when the user clicks on the button.
The third column is the “roll over” state, which is displayed when the cursor is over the button, and the
last image is the “disabled” state, which is displayed when the button is disabled.

Although you can design an image like this for each icon button in your project, this presents two
problems. First, if you need to change the background behind the icon and label, you must modify
every image in the database. Secondly, you cannot dynamically label buttons at runtime. This becomes
especially problematic when localizing an interface for multiple languages.

Both of these problems are solved by using this component. The Foundation Buttons component
dynamically creates images at runtime by combining an icon, dynamic text, and three parts of a
background image (left, middle, and right) to create images that can be used with 4D Picture Button
form objects. A small selection of background images are already built into the component, as is a
collection of generic icons. So to create the image above, simply call the Fnd_Bttn_GetPicture routine:

Fnd_Bttn_GetPicture ("Fnd_Bttn_Calendar";"Calendar")

This picture could then be used by a 4D Picture Button. Of course, you would need to be careful to
properly set the button’s attributes in the Property List. And you would need to procedurally set the
button’s size at runtime, since the size of the image returned depends on the current button style
settings, the text passed, and the button label length. To help you do all of this, you can instead just call
the Fnd_Bttn_CreateButton routine:

Fnd_Bttn_CreateButton (->myButton;->myPicture;"Fnd_Bttn_Calendar";"Calendar")

However, this component will also let you use custom background and icon images for even greater
control.

See the 4D Design Reference for complete information about using Picture Button form objects.

Foundation Developer Reference 45 Buttons Component

Built-In Button Styles

The Foundation Buttons component includes a few built-in background images. You can use these images
by setting a button style for the current process before creating the buttons. The button style is set using
the Fnd_Bttn_Style method.

Currently three button styles are available: Large, Smalll, and Small2. Each of these button styles is
available in a Windows and a Macintosh look.

The Large style is designed to draw platform specific toolbar buttons. Here’s an example of a button
created with the Large style:

Macintosh Platform Windows Platform
Print Print

Note that the platform is determined by the Fnd_Bttn_Platform command, not by the actual platform in
use. So either platform style can be displayed on either platform. By default, the platform is set to “Auto,”
so it will detect and use the actual platform.

The Large button style is designed to be displayed on a matching toolbar background image. These
background images (one for Macintosh and one for Windows), along with matching dividers, are included
with the Foundation Toolbar component.

The Large style for Windows requires approximately a 24x24 pixel icon. The Macintosh style requires a
32x32 icon. If a built-in icon is used, the size is selected for you automatically.

The Smalll and Small2 styles are designed to be displayed on the default Windows or Macintosh
background. Both button styles are 24 pixels tall, but vary in width depending on the contents displayed.

Macintosh Windows

Small .5 Print .5 Print
Small2 .5 Print .5 Print

These button styles are designed for a 16x16 icon. However, the icon image does not need to be exactly
16x16.

Foundation Developer Reference 46 Buttons Component

Built-in Icons

Built into this component are over 50 high-quality icons that you can use when creating buttons. Each
icon is included in three sizes: 16, 24, and 32 pixels.

=

Fnd_Bttn_Address

oo i
O 1

=1-1-1
[=1=]
[=1=1-1-1
ﬂﬂﬂu
[=1=]

Fnd_Bttn_Calculator

Fnd_Bitn_CardPlus

Ve

Fnd_Bttn_Chart

%

Fnd_Btin_DocMag

Fnd_Bttn_Earth

Y

Fnd_Bttn_Filter

Fnd_Bitn_Info

/

Fnd_Btin_MacNew

Fnd_Btin_Alarm

—

Fnd_Bttn_Calendar
=,

Fnd_Btin_CardPrinter

E;

Fnd_Bttn_Checklist

&

Fnd_Btin_DocPlus

i

Fnd_Bttn_Envelope
Fnd_Bitn_Gear

Fnd_Bitn_Letters

Fnd_Bttn_MacPrint

Fnd_Bttn_Arrows

Fnd_Bttn_CardBlocks

Fnd_Bttn_Cards

%

Fnd_Bttn_Connect

[—

Fnd_Bttn_Document

=

Bttn_Export

e

Fnd_Btin_GreenPlus

Fn

(=

T
é

Fnd_Bitn_Lock

Fnd_Bttn_MacShowAll

B

Fnd_Btin_Backup Fnd_Bttn_Browser

0

Fnd_Bttn_CardMagnifier Fnd_Bttn_CardMinus

I

Fnd_Btin_Card Fnd_Bttn_Cart

&

Fnd_Bitn_Disconnect Fnd_Bitn_Diskette

s
2

Fnd_Bttn_DownArrow Fnd_Bttn_Duplicate

ID'I

Fnd_Bttn_Fax

=

Fnd_Bttn_Import

-
=
=
(=3
=
=
=

Forms

Fnd_Bttn_IndexCards

yo

Fnd_Bttn_MacDelete Fnd_Bitn_MacFind

Je

Fnd_Bttn_MacSort Fnd_Bttn_Magnifier

Foundation Developer Reference

47

Buttons Component

I~

Fnd_Bttn_Mail

A

Fnd_Bttn_Notepad

|

X
|

Fnd_Bttn_Options

-

Fnd_Bttn_People

&

Fnd_Bttn_Person

Fnd_Bttn_Phone Fnd_Bttn_Printer

Fnd_Bttn_Question Fnd_Bttn_RedX Fnd_Btin_Script

O 2 @

Fnd_Bttn_Star Fnd_Bttn_Stop Fnd_Bttn_Toolbox Fnd_Bttn_Unlock Fnd_Bttn_UpArrow

X P E)=

Fnd_Bitn_WinDelete Fnd_Bttn_WinFind Fnd_Bttn_WinNew Fnd_Bitn_WinPrint

B 5 4

Fnd_Bttn_WinShowAll Fnd_Bttn_WinSort Fnd_Bttn_Wrench

I’

Fnd_Bttn_Wand

To use one of these icons when creating a button, just pass the button name displayed above to one of
the routines in this component. The Foundation Buttons component will select the appropriate size of
the icon based on the button style.

Creafing Custom lcon Images

In addition to using the icons included with the Foundation Buttons component, you can also create
buttons that use your own custom artwork. The Foundation Buttons component routines can accept one
of the icon names listed above, or the name of a series of pictures contained in the 4D Picture Library.
When using a custom icon name, the Buttons component will look for an image with the specified icon
name plus “_a” to use when drawing the button in its “active” state. The icon name plus “_b” is used

to draw the button in the clicked state. And the icon name plus “ ¢ is used to draw the button in the
disabled state.

For example, to create a custom button icon named “Button _Home” we would actually need to create
three images in the 4D Picture library named “Button_Home_a,” “Button_Home_b,” and “Button_

Home ¢”:
#
= =
E L

Button_Home_a Button_Home_b Button_Home_c

Foundation Developer Reference 48 Buttons Component

All of the icons should include a white background.

The “clicked” and “disabled” icons can easily be created from the original icon artwork using a good image

editing application. The instructions below will describe one way the image could be created using Adobe
Photoshop.

Start with an icon image with no background. Create a white background in a separate layer.

Create two more copies of the icon layer to use as the “clicked” and “disabled” versions. Select one of
these and then select the Image->Adjustments->Hue/Saturate menu item. The Hue/Saturation dialog
will appear. Enter -50 into the Lightness field. This will darken the image. Click OK and name this layer as
the “clicked” layer.

Select another icon layer and again select the Image->Adjustments->Hue/Saturate menu item. This
time in the Hue/Saturation dialog, enter 50 into the Lightness field and click OK. This will lighten the
icon. Name this layer as the “disabled” icon.

Foundation Developer Reference 49 Buttons Component

You should now have three icons and a background image.

Hide the “clicked” and “disabled” buttons, select the first icon, then select the Edit->Copy Merged
menu command. This will copy both the icon and the background to the clipboard. Switch to 4D and
open the Picture Library. Paste the image into the Picture Library and give it a name ending with “ a.”

Switch back to Photoshop and use the same technique to copy the clicked and disabled icon images
(including the background) into the 4D Picture Library. The “clicked” image should have the same name
as the first image, except that it should end with “_b.” The “disabled” image should end with “ ¢.” All
three images should have exactly the same height and width.

Do not use the “Fnd_Bttn” prefix when creating custom button icons. This may cause unexpected results.

Foundation Developer Reference 50 Buttons Component

Language Reference

Here are the routines in Foundation’s Buttons component:

Fnd_Bttn_CreateButton Fnd_Bttn_Platform
Fnd_Btin_GetPicture Fnd_Bttn_SetBackgroundPict
Fnd_Bttn_GetPictureName Fnd_Bitn_SefTextProperties
Fnd_Bttn_GetPictureWidth Fnd_Btin_Style

Fnd_Bttn_Info

Fnd_Btin_CreateButton

Fnd_Btin_CreateBution (->button object; ->picture; icon name; label)

Parameter Type Description

button object Pointer A picture button form object

picture Pointer A picture variable

icon name Text Name of the icon o use from the 4D picture library
label Text Label for the button

Use this routine in the On Load phase to quickly set up a picture button on a 4D form. Pass this routine
a pointer to a picture button form object, a picture variable to hold the button image, the icon name to
use and a label to use.
Case of
: (Form event=0n Load)
C_PICTURE(myPicture)
Fnd_Bttn_Style ("Small2")

Fnd_Bttn_CreateButton (->myButton;->myPicture;"Button_Home";"Home")
End case

The style of the button created will depend on the current button settings set by the Fnd_Bttn_Platform
and Fnd_Bttn_Style commands.

The first parameter is a pointer to a Picture Button form object. The size of this form object is
unimportant, as it will be resized by this call. The object’s attributes do not need to be specified — this
routine will set them to properly display a rollover picture button.

The picture variable is used as storage space for the picture button’s image. It must be declared as a
picture variable before calling this method. You will not need to access this variable to use the button,
however, you may clear the contents of this variable when the button is no longer needed.

After this call, the picture button will be resized to properly fit the button image. This varies depending
on the current button style, the size of the icon, and the width of the button label. If necessary, you can
procedurally move the button using 4D’s MOVE OBJECT command.

Foundation Developer Reference 51 Buttons Component

You can control the button’s attributes using 4D’s ENABLE BUTTON and DISABLE BUTTON
commands:

DISABLE BUTTON(myButton)

Use the form object’s method to detect a click on the button:

Case of
: (Form event=0n Clicked)
* Put your code here to handle the click.
End case

Fnd_Btin_GetPicture

Fnd_Bttn_GetPicture (icon name; button label) = Picture

Parameter Type Description

icon name Text Name of the icon to use from the 4D picture library
button label Text Label for the button

Function result Picture Picture to use for a 4D picture rollover button

This routine returns a picture of a rollover based on the parameters you pass for the icon, text, size and
type. The Buttons component caches the images it creates, so if the picture already exists in the cache, it
is retrieved from there instead of being generated again.

Fnd_Bttn_GetPicture ("Fnd_Bttn_Calendar";"Events")

The icon name can be one of the icons pre-installed in the Button component (e.g. “Fnd_Bttn_Alarm”),
or it can be the name of a series of pictures in the 4D Picture Library. This routine will look for an image
with the specified icon name plus “_a” to use when drawing the button in its “active” state. The icon
name plus “_b”is used to draw the button in the clicked state. And the icon name plus “ ¢” is used to
draw the button in the disabled state. See the details at the beginning of this chapter.

Fnd_Btin_GetPictureName

Fnd_Bttn_GetPictureName (icon name; button label) = Text

Parameter Type Description

icon name Text Name of the icon to use from the 4D picture library
button label Text Label for the button

Function result Text The cache picture name

This routine returns the name that is used to store the specified picture button image in the cache. It has
been exposed specifically for use only by the Toolbar component. This routine will be removed in a future
update.

Foundation Developer Reference 52 Buttons Component

Fnd_Bttn_ GetPictureWidth

Fnd_Bttn_GetPictureWidth (icon; text) = Number

Parameter Type Description

icon Text Name of the icon
text Text Button label
Function result Number Width of the piciure

Fnd_Bttn_GetPictureWidth returns the width of the rollover picture that uses the specified icon and
text.

$buttonWidth:=Fnd_Bttn_GetPictureWidth ("Fnd_Bttn_Wrench";"Special Functions")
The size returned will depend on the button platform and style currently set for the current process.

Although this routine does not return the image, the composite button image is generated and stored in
the cache.

Fnd_Bttn_Info

Fnd_Bttn_Info (info requested) > Text

Parameter Type Description
info requested Text Info desired
Function Result Text Response

This routine returns the requested information about the component.

$version_t:=Fnd_Bttn_Info ("version")

The Fnd_Bttn_Info method will respond to these requests:

Request Response Example
name The component’s full name Foundation Buttons
version The component's version number 4]

This component can also be called using the Fnd_Gen_Componentinfo method without first testing to
see if the component is installed:

$version_t:=Fnd_Gen_ComponentInfo ("Fnd_Bttn";"version")

See the Fnd_Gen_Componentinfo method for more information.

Foundation Developer Reference 53 Buttons Component

Fnd_Bttn_Platform

Fnd_Btin_Platform (platform) = Text

Parameter Type Description
platform Text "Auto" or "Mac" or "Win"
Function result Text Current platform setting

Call this routine to specify the platform style to use when creating the next button image. The platform
value must be either “Auto,” “Mac,” or “Win.”

Fnd_Bttn_Platform ("Mac") * Draw Macintosh style buttons regardless of the platform.
The “Auto” setting lets the component select the appropriate platform setting for the current platform.
This routine can also be called as a function to determine the current platform setting:

$bttnPlatform:=Fnd_Bttn_Platform
Only “Mac” or “Win” will be returned. “Auto” will not be returned.

This command affects only the current process.

Fnd_Bttn_SetBackgroundPict

Fnd_Btin_SetBackgroundPict (left; middle; right)

Parameter Type Description

left Picture Left edge of the button

middle Picture Middle of the button (generally 1 pixel wide)
right Picture Right edge of the button

If you would like to design your own artwork to be used as a button background, pass images to these
button parts using this method.

GET PICTURE FROM LIBRARY("MyButtonBackgroundLeft"; $leftImage)

GET PICTURE FROM LIBRARY("MyButtonBackgroundMiddle"; $middleImage)

GET PICTURE FROM LIBRARY("MyButtonBackgroundRight"; $rightImage)
Fnd_Bttn_SetBackgroundPict ($leftimage;$middleImage;$rightImage)

For example these images are used to create the Smalll button for Macintosh (enlarged):

Left Middle Right

All three images must be exactly the same height. The middle image must be exactly 1 pixel wide. It will
be replicated as needed to provide a final button background image wide enough for the specified icon
and text.

Foundation Developer Reference 54 Buttons Component

The middle image is required, but the outer images (left and right) are optional. For example, the
Macintosh style Large button uses only a middle image to create the button background. No left or right
ends to the button are used.

Fnd_Bttn_SetTexiProperties

Fnd_Bttn_SetTextProperties (font name; font size; font style)

Parameter Type Description

font name Text Font name

font size Longint Font size

font style Longint Font style (use 4D constants)

Fnd_Bttn_SetTextProperties sets the text properties for the button labels. Call this routine before
calling the Fnd_Bttn_CreateButton, Fnd_Bttn_GetPicture, or Fnd_Bttn_GetPictureWidth
methods.

Fnd_Bttn_SetTextProperties ("Avant Garde";15;Plain)

4D’s font style constants should be used for the font style parameter.

Fnd_Bitn_Style

Fnd_Bttn_Style ({desired style name}) = Text

Parameter Type Description
desired style name Text Desired button style name (optional)
Function result Text Actual button style name

Pass a style name to set the button style to use when drawing the next button image. See the beginning of
this chapter for examples of each style.

Fnd_Bttn_Style ("Small2")

The style name must be either “Large,” “Small1,” or “Small2.” Call this routine before calling the

Fnd_Bttn_CreateButton, Fnd_Bttn_GetPicture, or Fnd_Bttn_GetPictureWidth methods. This

command affects only the current process.

This method can also be called as a function to determine the current style setting:
$style:=Fnd_Bttn_Style

Foundation Developer Reference 55 Buttons Component

Data Component
Fnd_Data

’:[;16 Data component provides a series of utility methods for dealing with
common data formats. Phone numbers, postal codes, web URLs, e-mail addresses, and personal names
are handled by these routines. You can call these commands anywhere in your database.

Language Reference

Here are the routines in Foundation’s Data component:

Fnd_Data_EmailAddressError
Fnd_Data_FormatBypassKey
Fnd_Data_FormatError
Fnd_Data_FormatPhone
Fnd_Data_FormatPostalCode

Fnd_Data_FormatText
Fnd_Data_FormafWebURL
Fnd_Data_Info
Fnd_Data_ParseName

Foundation Developer Reference 56

Data Component

Fnd_Data_ EmailAddressError

Fnd_Data_EmailAddressError (email address) =» Longint

Parameter Type Description
email address Text e-mail address fo verify
funtion result Longint error number

The Fnd_Data_EmailAddressError function checks the validity of an e-mail address. Function returns
0 if e-mail is valid and 1 if invalid.
If (Fnd_Data_EmailAddressError (Self->)>0)

" Email address is invalid
End if

Fnd_Data_FormatBypassKey

Fnd_Data_FormatBypassKey ({bypass key}) =» Longint

Parameter Type Description
bypass key Longint key mask used to bypass data formatting (optional)
current bypass key Longint current bypass key (default is Option key mask)

The Fnd_Data_FormatBypassKey routine allows the user to bypass data entry formatting. The bypass
key defaults to Option key mask while other acceptable values are Command key mask, Control key mask,
Shift key mask, or Caps lock key mask.

$bypass_key_i:= Fnd_Data_FormatBypassKey (Shift key mask)

Fnd_Data_ FormatError

Fnd_Data_FormatError =» Longint

Parameter Type Description
Function result Longint last formatting error number

The Fnd_Data_FormatError function returns the last formatting error.

This function allows the developer to detect if any of the data formatting routines had a problem trying to
format the data.

Foundation Developer Reference 57 Data Component

$error_i:= Fnd_Data_FormatError

Fnd_Data_FormatPhone

Fnd_Data_FormatPhone (phone number) = Text

Parameter Type Description
phone number Text phone number to format
Function result Text formatted phone number

The Fnd_Data_FormatPhone function formats text of a phone number. Function returns the formatted
phone number.

Self->:=Fnd_Data_FormatPhone (Self->)

Fnd_Data_FormatPostalCode

Fnd_Data_FormatPostalCode (postal code) = Text

Parameter Type Description
postal code Text postal code to format
Function result Text formatted postal code

The Fnd_Data_FormatPostalCode function formats text of a postal code. Function returns the
formatted postal code.

Self->:=Fnd_Data_FormatPostalCode (Self->)

Fnd_Data_ FormatText

Fnd_Data_FormatText (text) =» Text

Parameter Type Description
text Text text to format
Function result Text formatted text

The Fnd_Data_FormatText function formats text by stripping any leading or trailing spaces, removes
any double spaces from within the text and capitalizes the first letter of each word, unless the user holds
down the bypass key (default Option/Alt). Function returns the formatted text.

Foundation Developer Reference 58 Data Component

Self->:=Fnd_Data_FormatText (Self->)

Fnd_Data_FormaiWebURL

Fnd_Data_FormatWebURL (url) =» Text

Parameter Type Description
url Text url o format
Function result Text formatted url

The Fnd_Data_FormatWebURL function formats text of a web URL. Function returns the formatted
web URL.

Self->:=Fnd_Data_FormatWebURL (Self->)

Fnd_Data_Info

Fnd_Data_lInfo (info requested) = Text

Parameter Type Description
info requested Text Info desired
Function Result Text Response

This function returns the requested information about the Data component.

$version_t:=Fnd_Data_Info ("version")

The Fnd_Data_Info method will respond to these requests:

Request Response Example
name The component's full name Foundation Data
version The component's version number 4.0.5 beta 4

This routine can also be called using the Fnd_Gen_Componentinfo method without first testing to see
if the component is installed:

$version_t:=Fnd_Gen_ComponentInfo ("Fnd_Data";"version")

See the Fnd_Gen_Componentinfo method for more information.

Foundation Developer Reference 59 Data Component

Fnd_Data_ParseName

Fnd_Data_ParseName (fullname; ->first name{; ->last name{; ->middle initial}})

Parameter

fullname
first name
last name
middle iniial

Type
Text
Pointer
Pointer
Pointer

Description

fullname to parse

pointer fo person's first name

pointer fo person's last name (optional)
pointer fo person's middle inifial (optional)

The Fnd_Data_ParseName command parse text of a person's name. The command attempts to split
the person's full name into separate parts while removing titles such as Mr. Mrs. Jr. Sr. and M.D.

Fnd_Data_ParseName (Self->;->[Contact]FirstName;->[Contact]LastName)

Foundation Developer Reference

60 Data Component

Date Component
Fnd_Date

’:[;16 Date component provides utility routines for formatting and filtering
dates. You can call these commands from anywhere in your database.

Language Reference

Here are the routines in Foundation’s Date component:

Fnd_Date_Calendar
Fnd_Date_DateAndTimeTolSO
Fnd_Date_DateToString
Fnd_Date_End0fMonth
Fnd_Date_EntryFilter
Fnd_Date_Info
Fnd_Date_ISOtoDate

Fnd_Date_ISOtoTime
Fnd_Date_MonthName
Fnd_Date_RoundTime
Fnd_Date_StringToDate
Fnd_Date_SystemDateFormat
Fnd_Date_YearMonthDayToDate

Foundation Developer Reference 61

Date Component

Fnd_Date_ Calendar

Fnd_Date_Calendar (->date field or variable)

Parameter Type Description
field or variable Pointer Pointer to the field or variable

The Fnd_Date_Calendar routine displays a small calendar window and allows the user to select a date
which is stored in the field or variable that the parameter points to. The OK variable is set to 1 if a date is
selected.

$0k_b:= Fnd_Date_Calendar(->[Contact]Birthdate)

Fnd_Date_DateAndTimeTolSO

Fnd_Date_DateAndTimeTolSO (datef; time}) = Text

Parameter Type Description

date Date A date value to convert

time Time A time value to convert (optional)
Function result Text IS0 date formatted as text

This function returns an ISO 8601 formatted date or date-time value. If only a date is supplied, a calendar
date is returned in the format YYYY-MM-DD. If both a date and time are supplied, a date-time value is
returned in the format YYYY-MM-DDThh:mm:ss. If both are passed but the date is 100/00/00! then only
the time is returned in the format hh:mm:ss.

For more information, see:

<http://www.iso.org/iso/en/prods-services/popstds/datesandtime.html>

$datetimestamp_t:= Fnd_Date_DateAndTimeToISO(today_d;time_h)
$invoicedate_t:=Fnd_Date_DateToString ([Invoice]lnvoiceDate)

Fnd_Date_DateToString

Fnd_Date_DateToString (date{; relative to date{; format}}) =» Text

Parameter Type Description

date Date Date to convert

relative fo dae Date Relative date (optional)
format Text Date format (optional)
Function result Text Date converted fo text

Foundation Developer Reference 62 Date Component

This function returns "Today", "Tomorrow", or "Yesterday", if appropriate, and is localized if the
Localization component is available, otherwise returns a short date string by default. If relative to date is
included, "Today", "Tomorrow", or "Yesterday" will be relative to that date. Date will be formatted as a
short date string unless the date format is passed.

$invoicedate_t:=Fnd_Date_DateToString ([Invoice]InvoiceDate)

Fnd_Date_EndOfMonth

Fnd_Date_EndOfMonth (date) =» Date

Parameter Type Description
date Date Date to find lust day of the month
Function result Date Last day of the month of date parameter

This function returns the last day of the month passed.

$endofthemonth_d:=Fnd_Date_EndOfMonth ([Invoice]InvoiceDate)

Fnd_Date_EntryFilter

Fnd_Date_EntryFilter (->date field or variable)

Parameter Type Description
date Pointer Pointer to date field or variable
Function result Date Last day of the month of date parameter

This method interprets what has been entered as a date. If the function key is pressed, the following
actions take place.

Function Action

+or= Add a day

- Subtract a day
T Today

M First of the Month

N Middle of the moNth
H End of the montH

Y First of the Year

R End of the yeaR

(Display the calendar

Place in the object method of the date field or variable. Be sure to enable the object's On Before
Keystroke and On Data Change events.

Foundation Developer Reference 63 Date Component

Fnd_Date_EntryFilter(Self)

Fnd_Date_Info

Fnd_Date_Info (info requested) = Text

Parameter Type Description
info requested Text Info desired
Function Result Text Response

This function returns the requested information about the Date component.

$version_t:=Fnd_Date Info ("version")

The Fnd_Date_Info method will respond to these requests:

Request Response Example
name The component’s full name Foundation Date
version The component's version number 4.0.5 beta 4

This routine can also be called using the Fnd_Gen_Componentinfo method without first testing to see
if the component is installed:

$version_t:=Fnd_Gen_ComponentInfo ("Fnd_Date";"version")

See the Fnd_Gen_Componentinfo method for more information.

Fnd_Date_ISOtoDate

Fnd_Date_ISOtoDate (date string) =» Date

Parameter Type Description
date string Text 150 8601 formatted date
Function result Date Converted date

This function returns the date value from an ISO 8601 formatted date. The input can be in either of these
formats: YYYY-MM-DD or YYYY-MM-DDThh:mm:ss

$ISOdate_d:=Fnd_Date_ISOtoDate ("1997-01-12")

Fnd_Date_ISOtoTime

Fnd_Date_IS0toTime (date-fime string) =» Time

Parameter Type Description
date-time string Text 150 8601 formatted date-fime string

Foundation Developer Reference 64 Date Component

Function result Time Converted fime

This function returns the time value from an ISO 8601 formatted date-time string. The input can be in
either of these formats: YYYY-MM-DDThh:mm:ss or hh:mm:ss

$ISOdatetime_time:=Fnd_Date ISOtoTime ("10:23:45")

Fnd_Date_MonthName

Fnd_Date_MonthName (month number) =» Text

Parameter Type Description
month number Longint Month number 1 through 12
Function result Text Converted time

This function returns name of the month with the specified number. This routine will use Foundation's
Localization routine, if it is available, to return the localized month name. If the Fnd_Loc component is
not available, the name will be localized using 4D's language.

$monthname_t:=Fnd_Date MonthName (10)

Fnd_Date_RoundTime

Fnd_Date_RoundTime (time {; option}) => Time

Parameter Type Description

time Time Time to round
option Longint Rounding style
Function result Time Rounded fime

This function rounds the time based on the rounding option, default is to round to the nearest quarter
hour. If option is 1, round up or down to the nearest quarter hour. If option is 2, round down to the
nearest quarter hour.

$time_time:=Fnd_Date_RoundTime (current time)

Fnd_Date_StringToDate

Fnd_Date_StringToDate (date as text{; date format}) =» Date

Parameter Type Description

date as text Text Text of date to be converted fo a date
date format Text Date format (optional)

Function result Date Converted date

Foundation Developer Reference 65 Date Component

This function returns the date equivalent of the string passed. The input can be in any of these formats:
M/D/Y, D/M/Y, Y/M/D and Y/D/M. Two digit years are resolved as per the SET DEFAULT CENTURY
command. Dates can be entered with any character as a delimiter. If no year is entered, the current year
is assumed. If only a one or two digit number is entered, the current month is assumed. If no delimiter is
used, the following formats are supported (M/D/Y format):

070476 Returns a date of 07/04/76

07041976 Returns a date of 07/04/1976

0704 Returns 07,/04,/00 (If this is in fact the year 2000)
04 or 4 Returns the 4th day of the current month

74, 704 and 074 are not supported

"Today" returns the Stoday_date

"Yesterday" returns the Stoday_date -1

"Tomorrow" returns the Stoday_date +1

$date_d:=Fnd_Date_StringToDate ("07/04/76")

Fnd_Date_SystemDateFormat

Fnd_Date_SystemDateFormat =» Text

Parameter Type Description
Function result Text Current system's date format

This function returns a string that can be used in If and Case statements to test the current system's date
format. It will return Y, M, and D based in the following format:

"M/D/Y" = Month/Day/Year
"D/M/Y" = Day/Month/Year

$systemdateformat_t:=Fnd_Date SystemDateFormat

Fnd_Date_YearMonthDayToDate

Fnd_Date_YearMonthDayToDate (year; month; day) =» Date

Parameter Type Description

year (2 or 4 digits) Longint Year to be converted to a date
month Longint Month to be converted to a date
day Longint Day fo be converted to a date
Function result Date Converted date

This function returns the date equivalent of the year, month and day passed.
$date_d:=Fnd_Date_YearMonthDayToDate (2001;12;3)

Foundation Developer Reference 66 Date Component

Dictionary Component
(Fnd_Dict)

’:[;16 optional Foundation Dictionary component is basically a lookup table feature. It allows you to
create collections of data (values), with each item tagged with a unique name (keys). The values can be
added to and retrieved from the collection in any order. Each collection, or dictionary, is referenced by a
unique reference number. Dictionaries are an ideal way to manage multiple instances of preferences, data
structures, and parameters. Dictionaries can also be saved to and retrieved from records and disk files.
You can all do this without polluting 4D’s process variable namespace.

This component works similarly to Aparajita Fishman’s ObjectTools plugin. You create a dictionary, get a
reference to it, and start adding key/value pairs. The component uses reference counting to help manage
memory, and uses XML for storage. The code is simple and lightweight.

For example, imagine you have a method to which you need to pass more than 50 parameters. Or you
want to pass a variable number of parameters of differing types, depending on the value of the first
parameter. You cannot do these things with native 4D, but you can using the Dictionary component. Just
create and pass a dictionary with any combination of data.

This component was written by Rob Leveaux of Pluggers Software: <http://www.pluggers.nl/>

Foundation Developer Reference 67 Dictionary Component

http://www.aparajitaworld.com/site/products/ObjectTools/
http://www.pluggers.nl/

(reating Dictionaries

You create a new dictionary by calling the Fnd_Dict_New function. This function will return a reference
number that you'll use for all subsequent access to the dictionary and its contents.

$dict_i:=Fnd_Dict_New

You can optionally pass a name for the dictionary.
$dict_i:=Fnd_Dict_New ("NewContact")

By naming a dictionary, you can later get the dictionary’s reference number from other parts of your
code.

$dict_i:=Fnd_Dict_ID ("NewContact")

Dictionaries are shared by all processes. So a dictionary created in one process can be accessed by any
other process.

Storing and Retrieving Values

Once you have created a dictionary, you will store values in the dictionary. A dictionary can store any of
these value types:

Text or String

Integer or Long Integer
Real

Boolean

Date

Time

Pointer

Text or String Array
Integer or Long Infeger Array
Real Array

Boolean Array

Date Array

Pointer Array

You will assocate a name to each value you want to store. These names are referred to as the “key” to the
value. The key can be up to 32,000 characters.

For example, to store the number 300.56, we might select a key name of “Item Cost.” We can then store
this value in the dictionary using the Fnd_Dict_SetReal command:

Fnd_Dict_SetReal ($dict_i;"Item Cost";300.56)

Later, we can retrieve this value using the Fnd_Dict_GetReal function:
$value_r:= Fnd_Dict_GetReal ($dict_i;"Item Cost")

Foundation Developer Reference 68 Dictionary Component

Reference Counting

To help you manage the memory required by a dictionary, the Dictionary module uses a common
technique called “reference counting.” Each dictionary contains a counter that keeps track of how many
methods or processes are using it. When a dictionary is created (or loaded) its reference count is set to

1. Each call you make to the Fnd_Dict_Retain method increments this counter. And each call made to
Fnd_Dict_Release decrements this counter. Once the counter reaches zero, its contents are deleted to
free the memory it was using.

So for each dictionary that you create or retain, you should be sure to release it at some point.

For example, here is a routine that creates a new dictionary, stores it in a BLOB, then releases it:

$dict_i:=Fnd_Dict_New

Fnd_Dict_SetBoolean ($dict_i;"BoolValue";True)
Fnd_Dict_SetText ($dict_i;"TextValue";"Example")
Fnd_Dict_SaveToBlob ($dict_i;->MyDict_blob)
Fnd_Dict_Release ($dict_i)

Without the call to Fnd_Dict_Release, the dictionary and the data that it stores will remain in memory
until you quit 4D.

More Information

See this Wikipedia article for more information about software dictionaries:
<http://en.wikipedia.org/wiki/Associative_array>

See this Wikipedia article for more information about reference counting:
<http://en.wikipedia.org/wiki/Reference _counting>

Foundation Developer Reference 69 Dictionary Component

http://en.wikipedia.org/wiki/Associative_array
http://en.wikipedia.org/wiki/Associative_array
http://en.wikipedia.org/wiki/Associative_array

Language Reference

Here are the routines in Foundation’s Dictionary component:

Fnd_Dict_DataType
Fnd_Dict_GetArray
Fnd_Dict_GetBoolean
Fnd_Dict_GetDate
Fnd_Dici_GetLongint
Fnd_Dict_GetPointer
Fnd_Dict_GetReal
Fnd_Dict_GefText
Fnd_Dict_GetTime
Fnd_Dict_HasKey
Fnd_Dict_ID
Fnd_Dict_Info
Fnd_Dict_IsValid
Fnd_Dict_ltemCount
Fnd_Dict_Keys
Fnd_Dict_LoadFromBlob
Fnd_Dict_LoadFromFile

Fnd_Dict_Name
Fnd_Dict_New
Fnd_Dict_Release
Fnd_Dict_Remove
Fnd_Dict_Retain
Fnd_Dict_RetainCount
Fnd_Dict_SaveToBloh
Fnd_Dict_SaveToFile
Fnd_Dict_SetArray
Fnd_Dict_SetBoolean
Fnd_Dict_SetDate
Fnd_Dict_SetLongint
Fnd_Dict_SetPointer
Fnd_Dict_SetReal
Fnd_Dict_SefText
Fnd_Dict_SefTime
Fnd_Dict_Values

Fnd_Dict_DataType

Fnd_Dict_DataType (dict ID; key name) = Number

Parameter Type
dict ID Number
key name Text
Function Result Number

Description

A dictionary ID
A key name
The data type

This routine returns the data type of a key. The data type is a number which corresponds to 4D’s standard

data type constants:

Is Text

Is Longint

Is Real

Is Boolean

Is Date

Is Time

Is Pointer
Text array
Longint Array
Real Array
Boolean array
Date array
Pointer array

Foundation Developer Reference

70

Dictionary Component

Fnd_Dict_GetArray

Fnd_Dict_GetArray (dict ID; key name; ->values)

Parameter Type Description

dict ID Number A dictionary ID

key name Text Akey name

values Pointer Text array fo receive values

This method returns an array of values from a dictionary given a key.

Fnd_Dict_GetBoolean

Fnd_Dict_GetBoolean (dict ID; key name) = Boolean

Parameter Type Description
dict ID Number A dictionary ID
key name Text Akey name
Function Result Boolean The value

This function returns a Boolean value with the specified key from a dictionary.

Fnd_Dict_GetDate

Fnd_Dict_GetDate (dict ID; key name) = Date

Parameter Type Description
dict ID Number A dictionary ID
key name Text Akey name
Function Result Date The value

This function returns a 4D Date value with the specified key from a dictionary.

Fnd_Dict_GetLongint

Fnd_Dict_GetLongint (dict ID; key name) = Longint

Parameter Type Description
dict ID Number A dictionary ID
key name Text Akey name
Function Result Longint The value

Foundation Developer Reference 7 Dictionary Component

This function returns a long integer value with the specified key from a dictionary.

Fnd_Dict_GetPointer

Fnd_Dict_GetPointer (dict ID; key name) = Pointer

Parameter Type Description
dict ID Number A dictionary ID
key name Text A key name
Function Result Pointer The value

This function returns the pointer with the specified key from a dictionary.

Fnd_Dict_GetReal

Fnd_Dict_GetReal (dict ID; key name) = Real

Parameter Type Description
dict ID Number A dictionary ID
key name Text Akey name
Function Result Real The valve

This function returns a floating point numeric value with the specified key from a dictionary.

Fnd_Dict_GefText

Fnd_Dict_GetText (dict ID; key name) > Text

Parameter Type Description
dict ID Number A dictionary ID
key name Text Akey name
Function Result Text The value

This function returns a text value with the specified key from a dictionary.

Foundation Developer Reference 72 Dictionary Component

Fnd_Dict_GefTime

Fnd_Dict_GetTime (dict ID; key name) = Time

Parameter Type Description
dict ID Number A dictionary ID
key name Text Akey name
Function Result Time The value

This function returns a 4D time value with the specified key from a dictionary.

Fnd_Dict_HasKey

Fnd_Dict_HasKey (dict ID; key name) = Boolean

Parameter Type Description

dict ID Number A dictionary ID

key name Text Akey name
Function Result Boolean True if the key exists

This function tests whether or not a specific key exists in a dictionary. It will return True if the key exists.

Fnd_Dict_ID

Fnd_Dict_ID (dict name) = Number

Parameter Type Description
dict name Text A dictionary name
Function Result Number The dictionary's reference number

This function returns the reference number with the first dictionary found with the specified name.

Keep in mind that it is possible to create multiple dictionaries with the same name. If more than one
dictionary exists with the specified name, the first match will be returned.

Fnd_Dict_Info

Fnd_Dict_lInfo (info requested) = Text

Parameter Type Description
info requested Text Info desired
Function Result Text Response

Foundation Developer Reference 73 Dictionary Component

This function returns the requested information about the Dict component.

$version_t:=Fnd_Dict_Info ("version")

The Fnd_Date_Info method will respond to these requests:

Request Response Example
name The component's full name Foundation Dict
version The component's version number 4.0.5 beta 4

This routine can also be called using the Fnd_Gen_Componentinfo method without first testing to see

if the component is installed:

$version_t:=Fnd_Gen_ComponentInfo ("Fnd_Dict";"version")

See the Fnd_Gen_Componentinfo method for more information.

Fnd_Dict_IsValid

Fnd_Dict_IsValid (dict ID) = Boolean

Parameter Type Description
dict ID Number A dictionary ID
Function Result Boolean True if the dictionary is valid

This function tests whether or not the specified dictionary reference is valid. It will return True if the
reference is valid and can be used.

Fnd_Dict_ItemCount

Fnd_Dict_ltemCount (dict ID) = Number

Parameter Type Description
dict ID Number A dictionary ID
Function Result Number The number of items

Returns the number of items (or keys) in a dictionary.

Foundation Developer Reference 74 Dictionary Component

Fnd_Dict_Keys

Fnd_Dict_Keys (dict ID; ->keys)

Parameter Type Description
dict ID Number A dictionary ID
keys Pointer Pointer to a text array

This command fills an array with the keys in the specified dictionary.

Fnd_Dict_LoadFromBlob

Fnd_Dict_LoadFromBlob (->dict BLOB) = Longint

Parameter Type Description
dict BLOB Pointer A dictionary in BLOB form
Function Result Number The new dictionary's reference number

This function loads a dictionary from a 4D BLOB created by a previous call to Fnd_Dict_SaveToBlob. It
returns the reference number to the new dictionary.

Fnd_Dict_LoadFromFile

Fnd_Dict_LoadFromFile (path) = Longint

Parameter Type Description
path Text A path to a dictionary file
Function Result Number The new dictionary's reference number

This function loads a dictionary from the file specified by the path parameter. It returns the reference
number to the new dictionary.

Fnd_Dict_Name

Fnd_Dict_Name (dict ID) = Text

Parameter Type Description
dict ID Number A dictionary ID
Function Result Text The dictionary's name

Foundation Developer Reference 75 Dictionary Component

This function returns the name of the dictionary. Each dictionary has a name, whether assigned when
calling the Fnd_Dict New method, or if automatically assigned by the component.

Fnd_Dict_New

Fnd_Dict_New ({name}) = Longint

Parameter Type Description
name Text A name (optional)
Function Result Number The new dictionary's reference number

This funciton creates a new dictionary and returns its reference number.

If no name is passed, the dictionary will be named "Dictionary n" where 7 is the dictionary’s reference
number. Note that this number may not reflect the dictionary’s actual reference number if the dictionary
is saved and later reloaded.

Fnd_Dict_Release

Fnd_Dict_Release (dict ID)

Parameter Type Description
dict ID Number A dictionary ID

This command decrements the retain count of a dictionary. Once the retain count reaches 0, the
dictionary is automatically cleared from memory.

Fnd_Dict_Remove

Fnd_Dict_Remove (dict ID; key name)

Parameter Type Description
dict ID Number A dictionary ID
key name Text A key name

Use this command to remove a key, and its associated data, from a dictionary.

Foundation Developer Reference 76 Dictionary Component

Fnd_Dict_Retain

Fnd_Dict_Retain (dict ID)

Parameter Type Description
dict ID Number A dictionary ID

This command increments the retain count for a dictionary

Fnd_Dict_RetainCount

Fnd_Dict_RetainCount (dict ID) = Longint

Parameter Type Description
dict ID Number A dictionary ID
Function Result Number The retain count

This function returns the retain count for the specified dictionary.

If the dictionary reference is not valid, 0 is returned.

Fnd_Dict_SaveToBlob

Fnd_Dict_SaveToBlob (dict ID; ->BLOB)

Parameter Type Description
dict ID Number A dictionary ID
BLOB BLOB A BLOB variable or field

Use this command to save a dictionary as a 4D BLOB.

Because 4D’s XML creation routines were introduced in 4D 2004, this command will work only with 4D

2004 or later.

Fnd_Dict_SaveToFile

Fnd_Dict_SaveToFile (dict ID; path)

Parameter Type Description
dict ID Number A dictionary ID
path Text Afile path

Foundation Developer Reference 77

Dictionary Component

Use this command to save a dictionary as a file.

If a file already exists at the path’s location, it will be replaced with the updated dictionary file.

Because 4D’s XML creation routines were introduced in 4D 2004, this command will work only with 4D

2004 or later.

Fnd_Dict_SetArray

Fnd_Dict_SetArray (dict ID; key name; ->values)

Parameter Type Description

dict ID Number A dictionary ID
key name Text A key name
values Array An array of values

Use this command to store an array of values in a dictionary.

The array can be an array any of these types:

Text or String
Longint or Integer
Real

Boolean

Date

Pointer

Fnd_Dict_SetBoolean

Fnd_Dict_SetBoolean (dict ID; key name; value)

Parameter Type Description

dict ID Number A dictionary ID
key name Text A key name
value Boolean The value to store

This command adds the specified key and Boolean value to the dictionary.

If the key already exists, the old value is replaced with this new value.

Foundation Developer Reference 78

Dictionary Component

Fnd_Dict_SetDate

Fnd_Dict_SetDate (dict ID; key name; value)

Parameter Type Description

dict ID Number A dictionary ID
key name Text Akey name
value Date The value to store

This command adds the specified key and 4D date value to the dictionary.

If the key already exists, the old value is replaced with this new value.

Fnd_Dict_Setlongint

Fnd_Dict_SetLongint (dict ID; key name; value)

Parameter Type Description

dict ID Number A dictionary ID
key name Text Akey name
value Boolean The value to store

This command adds the specified key and long integer (or integer) value to the dictionary.

If the key already exists, the old value is replaced with this new value.

Fnd_Dict_SetPointer

Fnd_Dict_SetPointer (dict ID; key name; value)

Parameter Type Description

dict ID Number A dictionary ID

key name Text Akey name

value Pointer The pointer o store

This command adds the specified key and pointer to the dictionary.

If the key already exists, the old value is replaced with this new value.

Foundation Developer Reference 79 Dictionary Component

Fnd_Dict_SetReal

Fnd_Dict_SetReal (dict ID; key name; value)

Parameter Type Description

dict ID Number A dictionary ID
key name Text Akey name
value Real The data to store

This command adds the specified key and floating numeric value to the dictionary.

If the key already exists, the old value is replaced with this new value.

Fnd_Dict_SetText

Fnd_Dict_SefText (dict ID; key name; value)

Parameter Type Description

dict ID Number A dictionary ID
key name Text Akey name
value Text The data to store

This command adds the specified key and text (or string) value to the dictionary.

If the key already exists, the old value is replaced with this new value.

Fnd_Dict_SefTime

Fnd_Dict_SefTime (dict ID; key name; value)

Parameter Type Description

dict ID Number A dictionary ID
key name Text Akey name
value Time The data to store

This command adds the specified key and 4D time value to the dictionary.

If the key already exists, the old value is replaced with this new value.

Foundation Developer Reference 80 Dictionary Component

Fnd_Dict_Values

Fnd_Dict_Values (dict ID; ->values)

Parameter Type Description
dict ID Number A dictionary ID
values Pointer Pointer to a text array

This function fills the text array with the values stored in the dictionary.

All of the values will be returned as text, regardless of their actual data type.

Foundation Developer Reference 81

Dictionary Component

Dialogs Component
(Fnd_Dlg)

’:[;16 Dialogs component enables you to display a variety of dialogs and
messages in order to retrieve data from the user, to ask the user a question,
or to notify the user about something.

Foundation Developer Reference 82 Dialogs Component

Dialogs

The routines in this component can be used to display alert, confirm, and request dialog boxes.

Foundation’s Alert dialog box:

Foundation’s Confirm dialog box:

Foundation’s Request dialog box:

The easiest way to use this component is simply to replace 4D’s ALERT, CONFIRM, and
Request commands with this component’s equivalents: Fnd_Dlg_Alert; Fnd_Dlg_Confirm; and
Fnd_Dlg_Request.

If you want additional control you can use the component’s other routines to configure the dialogs.
You can define the text for the buttons (Fnd_Dlg_SetButtons), whether or not the upcoming dialog
can be canceled (Fnd_Dlg_SetCancelable), which icon to display (Fnd_DIg_Setlcon), the position

Foundation Developer Reference 83 Dialogs Component

of the dialog (Fnd_Wnd_Position), the default value for a request dialog (Fnd_Dlg_SetRequest),

the message text (Fnd_DIg_SetText), the window title (Fnd_Wnd_Title) and position
(Fnd_Wnd_Position). After setting up the dialog, you call the Fnd_DIg_Display routine to display it to
the user.

For example:

Fnd_Wnd_Title ("Save")
Fnd_Dlg_SetText ("Save changes?";"If you don't save, your changes will be lost.")
Fnd_Dlg_SetButtons ("Yes";"No";"Cancel")

Fnd_Dlg_SetIcon (End_DIlg_WarnIcon)
Fnd_Wnd_Position (Fnd_Wnd_CenterOnWindow)

Fnd_DlIg_Display

If you have requested information to be entered by the user using the Fnd_DIg_SetRequest routine,
call the Fnd_Dlg_GetRequest routine to find out what the user has entered.

Foundation Developer Reference 84 Dialogs Component

Messages

The routines in this component allow you to open a message window

(Fnd_Dlg_MessageOpen), update it (Fnd_DIg_MessageUpdate), check if it has been canceled
by the user (Fnd_DIg_MessageCanceled), define the parameters for the progress indicator
(Fnd_Dlg_SetProgress), and close it (Fnd_DIg_MessageClose).

Alternatively, you can use the Fnd_Dlg_Message routine which replaces 4D’s MESSAGE command.

Much like the dialog routines, you can set the following aspects of the message window: the text
for the buttons (Fnd_Dlg_SetButtons), whether or not the upcoming dialog can be canceled
(Fnd_DIg_SetCancelable), the message text (Fnd_Dlg_SetText), and the window title
(Fnd_Wnd_Title).

Foundation’s standard Message window:

Foundation’s standard Message window with progress indicator:

Foundation Developer Reference 85 Dialogs Component

Language Reference

Here is the list of routines in Foundation’s Dialog component:

Fnd_Dlg_Alert Fnd_Dlg_MessageOpen
Fnd_Dlg_Confirm Fnd_Dlg_MessageUpdate
Fnd_Dlg_Customlcon Fnd_Dlg_Request
Fnd_Dlg_Display Fnd_Dlg_SetButtons
Fnd_Dlg_GetRequest Fnd_Dlg_SetCancelable
Fnd_Dlg_Info Fnd_Dlg_Setlcon
Fnd_Dlg_Message Fnd_Dlg_SetProgress
Fnd_Dlg_MessageCanceled Fnd_Dlg_SetRequest
Fnd_Dlg_MessageClose Fnd_Dlg_SeText

Fnd_Dlg_Alert

Fnd_DIg_Alert (message{; OK button})

Parameter Type Description
message Text Message to display
0K button Text OK button text or “*” for localized “OK” (optional)

The Fnd_DIg_Alert routine replaces 4D’s ALERT command. You can either pass a value to the OK
button parameter, which will be used in place of the OK button. Otherwise, “OK” will be used or the
localized version of “OK” will be used.

Fnd_DlIg_Alert ("The selected record cannot be deleted.")

Fnd_Dlg_Confirm

Fnd_Dlg_Confirm (message{; OK button{; Cancel button}})

Parameter Type Description

message Text Message to display

0K button Text OK button text “or “*" for localized “OK” (optional)
Cancel button Text Cancel button fext or “*" for localized “Cancel” (opfional)

The Fnd_DIg_Confirm routine replaces 4D’s CONFIRM command. You can pass titles for the OK
and Cancel buttons. If you leave the OK button parameter empty or pass “*”, “OK” (or its localized
equivalent) will be used. If you specify “*” for the Cancel button parameter, the localized version of

“Cancel” will be used.

Fnd_DlIg_Confirm ("Are you sure you want to delete the record?";"Delete")

Foundation Developer Reference 86 Dialogs Component

Fnd_DIlg_Customlcon

Fnd_DIg_Customlcon (picture library name) = Text

Parameter Type Description

message Text Message to display

0K button Text OK button text “or “*" for localized “0K” (optional)
Cancel button Text Cancel button fext or “*" for localized “Cancel” (opfional)

Use this routine to set and get the name of an image from the 4D Picture library to display as the icon
when displaying an alert, confirm, or request dialog.

Fnd_DlIg_CustomIcon ("ApplicationIcon")
Fnd_DIlg_Request ("Enter your company name:")

An image with the same name must be available in the 4D Picture Library. It should be exactly 64 pixels
wide and 64 pixels high.

Fnd_DlIg_Display
Fnd_DIg_Display

Parameter Type Description

No parameters required.

The Fnd_Dlg_Display routine displays the dialog that you have defined by using the other routines in
this component and in the Windows component (Fnd_Dlg_SetButtons, Fnd_DIg_SetCancelable,
Fnd_DIg_Setlcon, Fnd_DIg_SetProgress, Fnd_DIg_SetRequest, Fnd_DIg_SetText,
Fnd_Wnd_Position, and Fnd_Wnd_Title).

Foundation Developer Reference 87 Dialogs Component

Fnd_Wnd_Title ("Associate Contact")

Fnd_Dlg_SetText ("Associate this contact with *"+[Company]Name+""?";"You can either
associate this contact with the company, or create a new primary contact record.")
Fnd_Dlg_SetButtons ("Use This Contact";"Cancel";"New Contact")

Fnd_Dlg_CustomIcon ("ApplicationIcon")
Fnd_Wnd_Position (End_Wnd_CenterOnWindow)
Fnd_DlIg_Display

Fnd_Dlg_GetRequest

Fnd_Dlg_GetRequest = Text

Parameter Type Description

No parameters required.
Function result Text Value entered by the user

The Fnd_Dlg_GetRequest routine returns the value entered by the user after displaying a Request
dialog with the Fnd_DIg_Display routine in conjunction with the Fnd_Dlg_SetRequest routine.

See the Fnd_DIg_SetRequest routine for an example. This routine is unnecessary if you call the
Fnd_DIg_Request function.

Foundation Developer Reference 88 Dialogs Component

Fnd_Dlg_Info

Fnd_Dlg_Info (info requested) = Text

Parameter Type Description
info requested Text Info desired
Function Result Text Response

Returns the requested information about the component.

$version_t:=Fnd_DlIg_Info ("version")

The Fnd_Dlg_Info method will respond to these requests:

Request Response Example
name The component’s full name Foundation Dialogs
version The component's version number 40.

This routine can also be called using the Fnd_Gen_Componentinfo method without first testing to see
if the component is installed:

$version_t:=Fnd_Gen_ComponentInfo ("Fnd_DIg";"version")

See the Fnd_Gen_Componentinfo method for more information.

Fnd_DIlg_Message

Fnd_DIlg_Message (message text)

Parameter Type Description
message text Text Message text to display

The Fnd_Dlg_Message routine displays a message window. This routine replaces 4D’s MESSAGE
command.

Fnd_DIlg_Message ("Connecting to the data server...")

ODBC_Connect

Fnd_DIlg_Message ("Downloading the structure...")

ODBC_GetMetaData

ODBC_CloseConnection
Fnd_DIlg_MessageClose

You can update the message while it is displayed by calling this method again.

To close the message window that appears after calling this routine, call this routine again and pass an
empty string (*”) as the message text parameter, or call the Fnd_DIg_MessageClose command.

For more control over the message dialog, use the Fnd_DIlg_MessageOpen routine instead.

Foundation Developer Reference 89 Dialogs Component

Fnd_DIlg_MessageCanceled

Fnd_Dlg_MessageCanceled = Boolean

Parameter Type Description

No parameters required.
Function result Boolean Returns True if the user clicked Cancel

The Fnd_DIg_MessageCanceled routine returns True if the user has clicked the Cancel button in
the message dialog that is currently being displayed.

Fnd_DIlg_MessageClose

Fnd_Dlg_MessageClose

Parameter Type Description
No parameters required.

The Fnd_Dlg_MessageClose routine closes the message window that was previously opened with
Fnd_Dlg_Message or Fnd_DIg_MessageOpen.

See the Fnd_DIg_Message routine for an example.

Fnd_DIg_MessageOpen

Fnd_Dlg_MessageOpen

Parameter Type Description
No parameters required.

The Fnd_Dlg_MessageOpen routine opens a message window. You can also specify the button
text, the text to display, the window title, and whether the user can cancel the message window by
calling the following routines: Fnd_Dlg_SetButtons, Fnd_DIg_SetText, Fnd_Wnd_Title, and
Fnd_Dlg_SetCancelable.

Foundation Developer Reference 9 Dialogs Component

Fnd_DIlg_MessageUpdate

Fnd_DIlg_MessageUpdate (number)

Parameter Type Description
number Longint Next number in the sequence

The Fnd_Dlg_MessageUpdate routine updates the progress indicator if used by calling the
Fnd_Dlg_SetProgress routine.

The number parameter updates the progress indicator.

Fnd_Dlg_Request

Fnd_Dly_Request (message{; default{; OK button{; Cancel button}}}) = Text

Parameter Type Description

message Text Message fo display

default Text Default response text (optional)

0K button Text OK button text “or “*" for localized “OK” (optional)
Cancel button Text Cancel button text or “*” for localized “Cancel” (optional)
Function result Text User's response

The Fnd_DIg_Request routine is designed to replace 4D’s Request function. It displays a Request
dialog that can be modified by setting the default response text, the text of the OK button, and the text of
the Cancel button. This routine returns the user’s response and sets the OK variable.

$reply_t:=Fnd_DIg_Request ("Enter the customer's last name:")
If you pass “*” to the OK button or Cancel button parameter, the localized text for “OK” or “Cancel” will
be used.

If you have used the Fnd_Dlg_Request routine, you do not need to call Fnd_Dlg_GetRequest
because this routine returns the data entered by the user.

Foundation Developer Reference 91 Dialogs Component

Fnd_Dlg_SetButtons

Fnd_DIg_SetButtons ({button 1{; button 2{; bution 3}}})

Parameter Type Description

button 1 Text OK button text “or “*" for localized “OK” (optional)
button 2 Text Cancel button text or “*” for localized “Cancel” (optional)
button 3 Text Third button text (optional)

The Fnd_Dlg_SetButtons routine sets the button texts for the upcoming alerts that will be opened by
using the routines in this component. The third button is the “Don’t Save” button.

Pass values for the OK and Cancel buttons in the button 1 and button 2 parameters. If you pass “*”, the
localized version for these buttons will be used. The button 3 parameter sets the text of the third button.

If you do not pass a value to button 2 or button 3, these buttons will not be displayed. So, you can create a
dialog with one, two, or three buttons.

See the Fnd_DIg_Display routine for a code example.

Fnd_Dlg_SetCancelable

Fnd_DIg_SetCancelable (cancelable)

Parameter Type Description
cancelable Boolean True if the dialog can be canceled

With the Fnd_DIg_SetCancelable routine, you can specify whether or not the upcoming dialog can be
canceled. This routine can be used in conjunction with the Fnd_DIg_MessageOpen routine.

Foundation Developer Reference 92 Dialogs Component

Fnd_Dlg_Setlcon

Fnd_DIg_Setlcon ({icon number})

Parameter Type Description
icon number Longint Icon number (optional)

Use the Fnd_DIg_Setlcon routine to set the icon for an upcoming alert displayed with the
Fnd_DlIg_Display routine. Pass one of the following values:

Value 4D Constant Description lcon
0 Default icon (Note)

1 Fnd_Dlg_Notelcon Note Icon

2 Fnd_Dlg_Warnlcon Warn icon

3 Fnd_Dlg_Stoplcon Stop lcon

See the Fnd_DIg_Display routine for a code example.

Fnd_DIg_SetPosition

This command is obsolete and has been removed. Use the Fnd_Wnd_Position command instead.

Fnd_Dlg_SetProgress

Fnd_Dlg_SetProgress (to or from{; to})

Parameter Type Description
to or from Longint Starting number or ending number
to Longint Ending number (optional)

Call Fnd_DIg_SetProgress routine to set the from and to numbers in a message window. If only one
number is passed to the to or from parameter, the from is assumed to be 1. If to is greater than from, the
progress indicator will go backwards (from right to left).

This routine can be used in conjunction with the Fnd_DIg_MessageOpen routine.

Foundation Developer Reference 93 Dialogs Component

Fnd_Dlg_SetRequest

Fnd_DIg_SetRequest ({default})

Parameter Type Description
default Text Default value (optional)

The Fnd_DIg_SetRequest routine sets up the dialog to allow the user to enter a value when calling
the Fnd_Dlg_Display routine. Call this method with no parameters to cause the request area to be
displayed in the dialog:

Fnd_DlIg_SetText ("Enter your password:")

Fnd_Dlg_SetRequest

Fnd_DlIg_Display

If(OK=1)
$password_t:=Fnd_Dlg_GetRequest

End if

Or pass a text value to display in the request field:

Fnd_DlIg_SetText ("Enter the preferred date:")
Fnd_DlIg_SetRequest (String(Current date))
Fnd_DlIg_Display

If(OK=1)
$date_d:=Fnd_Dlg_GetRequest
End if

If you pass “*” to the default parameter, the entry area displays bullets rather than text. This feature is
useful for entering passwords.

Foundation Developer Reference 94 Dialogs Component

Fnd_Dlg_SetText ("Enter your password:")

Fnd_Dlg_SetRequest ("*")

Fnd_DlIg_Display

If(OK=1)
$password_t:=Fnd_DIg_GetRequest

End if

Fnd_Dlg_SetText

Fnd_Dlg_SeText (text 1{; text 2})

Parameter Type Description
text 1 Text Primary alert text
text 2 Text Smaller alert text (optional)

The Fnd_DIg_SetText routine sets the message texts for the upcoming dialogs opened with the
Fnd_Dlg_Display and Fnd_DIg_MessageOpen routines.

See the Fnd_DIg_Display routine for a code example.

You can define a smaller alert text as on Macintosh OS X in the text 2 parameter as shown in the dialog
below:

Foundation Developer Reference 95 Dialogs Component

Fnd_Dlg_SetWindowTitle

This command is obsolete and has been removed. Use the Fnd_Wnd_Title command instead.

Foundation Developer Reference 9 Dialogs Component

Find Component
Fnd_Find

E)undation’s Find component enables you to execute queries on the data in
your 4D application.

Foundation’s Find dialog box:

The visible fields in your database are displayed in this pop-up menu:

Foundation Developer Reference 97 Find Component

The list of operators changes depending on the type of the field selected:

The Search All Records, Add To Selection, Search Selection, and Omit From Selection radio buttons
allow you to define the query even more. By selecting Query Editor..., the standard 4th Dimension Query
Editor is displayed.

The Find dialog can be displayed simply by calling the Fnd_Find_Display method. Foundation will
automatically determine the table to use (by calling the Fnd_Gen_CurrentTable method) and display
all of the visible, searchable fields in the pop-up menu.

Foundation Developer Reference 98 Find Component

You can have more control over the dialog by calling the other component methods before calling Fnd
Find Display. For example, the following code will display all of the visible fields from the current table,
then add a separator line and a field from a related table to the pop-up menu:

Fnd_Find_AddTable (Fnd_Gen_CurrentTable)

Fnd_Find_AddSeparator
Fnd_Find_AddField (->[Companies]Company Name)

Here is the list of routines in Foundation’s Find component:

Fnd_Find_AddCustom Fnd_Find_AddTable
Fnd_Find_AddField Fnd_Find_Display
Fnd_Find_AddMultiField Fnd_Fnd_Info
Fnd_Find_AddSeparator Fnd_Find_SetEditorButton

Fnd_Find_AddSubfield

Language Reference

Here are the routines in Foundation’s Find component:

Fnd_Find_AddCustom

Fnd_Find_AddCustom (label; method name{; position})

Parameter Type Description

label Text Label to use

method name Text Method to call

position Longint Position in which to add the item (optional)

The Fnd_Find_AddCustom routine lets the developer add a custom field to the search dialog.

If the user selects the custom field label from the pop-up menu, Foundation will not attempt to search the
database. Instead, the specified method will be called and will be passed these parameters:

Parameter Type Description

[abel Text The label passed to the Fnd_Find_AddCustom method
operator Text The operator code selected in the second pop-up menu
search Text The text entered into the Find dialog

button Number The selected radio button

Search Operator Options:

SW = Starts With

EW = Ends With

(C = Contains

DC = Doesn't Contain
0

Foundation Developer Reference 99 Find Component

> = Greater Than

<= less Than

= Doesn't Equal

N> = Number greater than

N< = Number less than

N>= = Number is Greater or equal fo
N<= = Number is less than or equal to
N= = Number equals

N# = Number is not equal to

T=True

F = False

Radio button options:

1 = Search All

2 = Search Selection

3 = Add to Selection

4 = Omit from Selection

The method specified in this call must contain the following compiler declarations:

C_TEXT($1;$2;$3)
C_LONGINT($4)

Fnd_Find_AddField

Fnd_Find_AddField (->field{; position})

Parameter Type Description
field Pointer Pointer to the field to add
position Longint Position in which to add the item (optional)

The Fnd_Find_AddField routine lets the developer add a field to the search dialog. If position is not
specified, the field is added to the end of the list.

The field can be from the current table or a related table.

Fnd_Find_AddMultiField

Fnd_Find_AddMultiField (->array of field pirs; label{; position})

Parameter Type Description

array of field ptrs Pointer Pointer to an array of pointers

label Text Label for the popup item

position Longint Position in which to add the item (optional)

The Fnd_Find_AddMultiField routine lets the developer add one item for searching multiple fields to
the search dialog. If position is not specified, this item is added to the end of the list.

Foundation Developer Reference 100 Find Component

The array of field ptrs parameter must be an array of pointers, each of which points to a text or alpha field.

After calling Fnd_Find_Display, you should reset the array to zero elements to release the memory used
by the array.

This routine is ideal for allowing users to search all of the names fields without having to specify a specific
field each time. For example:

ARRAY POINTER (aFields;3)
aFields{1}:=->[Employees]First Name
aFields{2}:=->[Employees]Middle Name
aFields{3}:=->[Employees]Last Name
Fnd_Find_AddMultiField (->aFields;"Name")
Fnd_Find_Display

ARRAY POINTER (aFields;0)

Fnd_Find_AddSeparator

Fnd_Find_AddSeparator ({position})

Parameter Type Description
position Longint Position of the separator (optional)

The Fnd_Find_AddSeparator routine adds a separator line at position to the list of searchable fields to
the Find dialog.

Fnd_Find_AddSubfield

Fnd_Find_AddSubfield (->subfield; field type{; position})

Parameter Type Description

subfield Pointer A pointer to the subfield to add

field type Longint Type of the subfield

position Longint Position in which to add the item (optional)

The Fnd_Find_AddSubfield routine lets the developer add a subfield to the Find dialog. The field type
must be specified because we cannot procedurally determine its type like we can for fields. If a position is
not specified, the field is added to the end of the list.

The field type parameter can be one of 4D's Field Type constants:

4D Constant Type Value
Is Alpha Field Longint 0
Is Boolean Longint 6
Is Date Longint 4
Is Integer Longint 8
Is LongInt Longint 9
Is Real Longint 1

Foundation Developer Reference 101 Find Component

Is Text Longint
Is Time Longint 1

Fnd_Find_AddTable

Fnd_Find_AddTable (->table{; position})

Parameter Type Description
table Pointer A pointer fo the table to add
position Longint Position in which to add the item (optional)

The Fnd_Find_AddTable routine loads the visible, searchable fields for the specified table into the field

pop-up menu.
Fnd_Find_AddTable (->[Contacts])

This command relies on the table returned by Fnd_Gen_CurrentTable. If you want to
use Fnd_Find_AddTable from your own process, you must set the current table with

Fnd_Gen_CurrentTable. Remember to reset the current table when you are finished with your process.

$currentTable_ptr:=Fnd_Gen_CurrentTable

Fnd_Gen_CurrentTable($yourTablePointer_ptr)

Fnd_Find_AddTable ($yourTablePointer_ptr)
Fnd_Find_AddField ($yourFieldPointer_ptr)
Fnd_Find_Display * show the find dialog
Fnd_Gen_CurrentTable($currentTable_ptr)

* get the current setting
* set it to your working table

* reset it back to the table it was on

Fnd_Find_Display
Fnd_Find_Display

Parameter Type Description
No parameters required.

The Fnd_Find_Display routine displays the Find dialog. If the user clicks OK; the component performs

the query and the current selection is modified.

Fnd_Find_Info

Fnd_Find_Info (info requested) = Text

Parameter Type Description
info requested Text Info desired
Function Result Text Response

Foundation Developer Reference 102

Find Component

This function returns the requested information about the component.

$version_t:=Fnd_Find_Info (“version”)

The Fnd_Find_Info method will respond to these requests:

Request Response Example
name The component’s full name Foundation Find
version The component's version number 4.0.4 beta 2

This routine can also be called using the Fnd_Gen_Componentinfo method without first testing to see
if the component is installed:

$version_t:=Fnd_Gen_ComponentInfo ("Fnd_Find";"version")

See the Fnd_Gen_Componentinfo method for more information.

Fnd_Find_SetEditorButton

Fnd_Find_SetEditorButton (label{; method})

Parameter Type Description
label Text New label for the Query Editor button
method Text Method to execute (optional)

The Fnd_Find_SetEditorButton routine allows the developer to hide or modify the Query Editor button
in the Find dialog. Pass an empty string to label to hide the button.

Fnd_Find_SetEditorButton ("")

If method is specified, it will be executed instead of displaying 4D's Query Editor.
Fnd_Find_SetEditorButton ("Query with SQL";"MySQLSelectMethod")

Foundation Developer Reference 103 Find Component

General Component
(Fnd_Gen)

’:[;16 “Fnd_Gen” component is the only required Foundation component.
That is because it contains the core functions that are used by all of the other Foundation components.
This component requires the Foundation Extras plugin.

The components here were designed specifically for use by the other Foundation components. If there is
something here you can use in your routines, feel free.

Language Reference

Here is the list of routines in Foundation’s General component:

Fnd_Gen_BugAlert
Fnd_Gen_ButtonText
Fnd_Gen_CancelQuit
Fnd_Gen_CenterWindow
Fnd_Gen_ComponentAvailable
Fnd_Gen_ComponentCheck
Fnd_Gen_ComponentData

Fnd_Gen_GetString
Fnd_Gen_GetDatabaselnfo
Fnd_Gen_GetString
Fnd_Gen_Info
Fnd_Gen_LaunchAsNewProcess
Fnd_Gen_MenuBar
Fnd_Gen_Platform

Foundation Developer Reference 104

General Component

Fnd_Gen_Componentinfo Fnd_Gen_PlugInAvailable

Fnd_Gen_ComponentReport Fnd_Gen_QuitNow
Fnd_Gen_CurrentFormType Fnd_Gen_RemoveActivationCode
Fnd_Gen_CurrentTable Fnd_Gen_Reset
Fnd_Gen_FileName Fnd_Gen_SelectionChanged
Fnd_Gen_FormMethod Fnd_Gen_SetDatabaselnfo

Fnd_Gen_BugAlert

Fnd_Gen_BugAlert (method{; details})

Parameter Type Description
method Text Method name
details Text Details about the problem (optional)

The Fnd_Gen_BugAlert method provides a simple method for the developer to notify the end-user of
an problem that can happen only as a result of a programming error.

For example, if you create a method that requires two parameters, you can use 4D’s
Count parameters function to determine if two parameters have been passed. If the wrong number
of parameters has been passed, you would use the Fnd_Gen_BugAlert method to alert the end-user to
the problem. The Fnd_Gen_BugAlert method will describe the problem and ask the user to notify the
database developer.

If(Count parameters<2)

Fnd_Gen_BugAlert (Current method name;"Too few parameters were passed.")
End if

If you want to provide a more specific error message, pass a complete sentence as the second parameter.
This sentence will be displayed following the first sentence in the error message as shown below.

Do not use 4D’s Current method name function as the first parameter to this method if you are
calling it from a 4D component designed for 4D 2003.2 or earlier. With these earlier versions of 4D
2003, 4D does not return the method’s name if Current method name is called from a method in a
component. Instead, you must hard-code the current method name.

Foundation Developer Reference 105 General Component

This method is intended to display errors in the code, not runtime errors that occur because a file is not
where you expect it to be, or a value is not entered properly. Put this method only in places where you
assume it will never be called.

After displaying the alert, this routine calls 4D’s TRACE command to help you debug the error. The
TRACE command is ignored if the database is compiled.

Fnd_Gen_ ButtonText

Fnd_Gen_ButtonText (button; label; alignment{; ->obj1...>0hjN}) = Number

Parameter Type Description

button Pointer A pointer to the button

label Text New button text

alignment Longint Which end to keep stationary
obj1..objN Pointer Other form objects to move (optional)
Function result Number The increase in the button size

Sets the button text and resizes the button if necessary. The side passed as the alignment parameter
remains stationary, while the other side will be modified if necessary to allow the text to fit. The button
will only be enlarged if necessary, never made smaller than its original form size.

4D Constant Type Value
Align Left Longint 2
(enter Longint 3
Align Right Longint 4

You can optionally pass pointers to other form objects. If the button is resized, these objects will be
moved an equal amount so that they maintain an equal distance from the resized button. If you pass
Align Left as the alignment, then pass pointers to the objects located directly to the right side of the
button (the side that might be moved).

The amount of the increase in the button size is returned as the result of this function. This value can be
used if you need to procedurally modify aspects of other form objects.

For example, imagine we have a Find and Cancel button set located in the lower-right portion of a
dialog. If we localize the button text using 4D’s BUTTON TEXT command, the button labels change,
but the buttons remain the same size.

BUTTON TEXT(bFind;"Rechercher")

BUTTON TEXT(bCancel;"Annuler")

By replacing 4D’s BUTTON TEXT command with the Fnd_Gen_ButtonText method, the buttons are
now resized to fit the new labels.

Fnd_Gen_ButtonText (->bFind;"Rechercher";Align Right)

Fnd_Gen_ButtonText (->bCancel;"Annuler";Align Right)

However, now the Find button has expanded so that the Cancel button is no longer properly positioned.
So we can pass a pointer to the Cancel button to Fnd_Gen_ButtonText when we move the Find

Foundation Developer Reference 106 General Component

button. This tells the Fnd_Gen_ButtonText method to shift the Cancel button so that it retains its
original relationship with the Find button.

Fnd_Gen_ButtonText (->bFind;"Rechercher";Align Right ;->bCancel)
Fnd_Gen_ButtonText (->bCancel;"Annuler";Align Right)

Fnd_Gen_ CancelQuit

Fnd_Gen_ CancelQuit

Parameter Type Description
No parameters required.

When you call Foundation’s Fnd_Gen_QuitNow routine to quit the database, Foundation spends
about 30 seconds waiting for all of the processes to end. If you want Foundation to stop telling the
other processes to quit, call this method. This command can be called from any process to interrupt
Foundation’s attempt to quit.

Fnd_Gen_ CenterWindow

Fnd_Gen_CenterWindow (width; height{; type{; position{; itle{; close}}}})

Parameter Type Description

width Longint Width of the new window
height Longint Height of the new window
type Longint Window type (optional)
posifion Longint Window position (optional)
title Text Window title (optional)
close Boolean Has a close box (optional)
Function result Longint Window reference number

The Fnd_Gen_CenterWindow routine opens a new window centered on the screen or over the
front most window (depending on the value of position parameter). It is included primarily for use
by other components that do not wish to require the presence of the Windows component. If the
Foundation Windows component is installed in the database, use the Fnd_Wnd_OpenWindow or
Fnd_Wnd_OpenFormWindow routine instead.

Foundation Developer Reference 107 General Component

Fnd_Gen_ComponentAvailable

Fnd_Gen_ComponentAvailable (component name) = Boolean

Parameter Type Description
component name Text Name of the component
Function result Boolean True if the component is available

Use the Fnd_Gen_ComponentAvailable routine to determine if a specific Foundation component
is available. If it is, you can then call the component using 4D’s EXECUTE command. This allows
your method to behave differently if a component is available, yet still compile without the component
installed.

You can also make your own routines compatible with this routine by creating an initialization routine
that ends with “_Init.” For example, if you create a component named “MyComponent,” just create a
routine named “MyComponent_Init.” It does not matter what it does — it is only important that it does
not cause an error, or at least resets 4D’s Error variable to 0. You can then test for the component this
way:

If(Fnd_Gen_ComponentAvailable ("MyComponent"))

EXECUTE("MyComponentMethod")
End if

See the source code to Foundation's Fnd_Gen_MenuBar method to see how this function can be used.

Fnd_Gen_ComponentCheck

Fnd_Gen_ComponentCheck (calling component; required component)

Parameter Type Description
calling component Text Internal name of the calling component
required component Text Internal name of the required component

The Fnd_Gen_ComponentCheck routine displays an alert if the specified component is not available.
It then ends execution by calling 4D’s ABORT command. Use this command in the initialization of a
component that requires another Foundation component.

Foundation Developer Reference 108 General Component

Fnd_Gen_ComponentCheck("My Cool Component";"Fnd_DIg")
Fnd_Gen_ComponentCheck("My Cool Component";"Fnd_Wnd")

Fnd_Gen_ComponentData

Fnd_Gen_ComponentData (->codes array{; >inst vers {; ->cur vers}})

Parameter Type Description

codes array Pointer Atext array to receive the component prefixes

inst vers Pointer Atext array to receive the installed version numbers (optional)
cur vers Pointer Atext array to receive the current version numbers (optional)

This method returns in the passed arrays information about the Foundation components. All known
Foundation components are returned in the arrays, even if the component is not currently installed. If a
component is not installed, empty text strings are returned in the current versions array.

ARRAY TEXT(aComponentsPrefixes;0)

ARRAY TEXT(alnstalledVers;0)

ARRAY TEXT(aCurrentVers;0)

Fnd_Gen_ComponentData (->aComponentsPrefixes;->alnstalledVers;->aCurrentVers)

To get a component’s full name from the prefix, call the component’s _Info method:

ARRAY TEXT(aComponentsPrefixes;0)

Fnd_Gen_ComponentData (->aComponentsPrefixes)

ARRAY TEXT(aComponentNames;Size of array(aComponentsPrefixes))
For($i;1;Size of array(aComponentNames))

aComponentNames{$i}:=Fnd_Gen_ComponentInfo (aComponentsPrefixes{$i};"name”)
End for

Foundation Developer Reference 109 General Component

Fnd_Gen_Componentlnfo

Fnd_Gen_Componentlnfo (component name; info requested) = Text

Parameter Type Description

component name Text A component prefix

info requested Text Desired information

Function result Text Information requested or an error message

Many of the Foundation components include a method designed to return information about the
component or the current status of the component. These information methods are named with the
component’s prefix, followed by “ Info” (e.g. Fnd_Loc_Info).

In most cases, you will want to call these information methods directly. However, you may want to make
a component optional. In this case, you cannot call the method directly, because your structure would
not compile if you include a call to a method that does not exist. You can avoid this problem by using the
Fnd_Gen_Componentinfo method. It will call another component’s _Info method, after first checking
to see if the component is installed.

Pass this method a component name and name for the information you want. If the component exists,

Foundation will call its _Info routine, pass it the info label, and return the result. This allows you to get
information from a component in a single call, rather than having to first test to see if the component is
available.

$language:=Fnd_Gen_Componentinfo ("Fnd_Loc";"language")

If the component is not installed, “Component Not Available” will be returned.

$language_t:=Fnd_Gen_ComponentiInfo ("Fnd_Loc";"language")

If ($language_t="Component Not Available")
$language_t:="EN"

End if

If the component does not have an _Info routine, “Component Did Not Respond” will be returned.

We recommend that if a component does not recognize a request it should return the text “Component
Did Not Recognize Request”. These values will not be localized so the calling method can test for them.

Foundation Developer Reference 110 General Component

Fnd_Gen_ComponentReport

Fnd_Gen_ComponentReport

Parameter Type Description
No parameters required.

This routine displays Foundation’s Component Report window. The window displays a list of all of the
known Foundation components, along with the most recent version numbers known to the Foundation
General component, and the version numbers of any components currently installed in the database.

This routine is available from Menu Bar #1 (Fnd_Shell) in the Foundation shell. See Tools menu item
Component Report.

Fnd_Gen_CurrentFormType

Fnd_Gen_CurrentFormType ({form type}) = Number

Parameter Type Description
form type Longint Form type constant
Function result Number Form type constant

If no parameters are passed, Fnd_Gen_CurrentFormType returns the type of the currently displayed
form. Here are the values that this routine might return:

Value Constant Description

0 Fnd_Gen_NoForm No window

1 Fnd_Gen_UnknownForm Unknown form type

2 Fnd_Gen_QutputForm An output form

3 Fnd_Gen_InputForm An input form

4 Fnd_Gen_PreferencesForm The Preferences window
5 Fnd_Gen_AboutForm The About box

Use this method to determine the contents of the front most window. This gives you a way to determine
if an input form or an output form is front most. Constants are also included to determine if other
Foundation windows are front most.

Use this routine from methods called from the Administration dialog, the Print dialog, and the Special
Functions dialog to determine if the user is viewing a record or selection of records. For example, it may
be important to a printing routine to know at runtime if the user is viewing an input form or an output
form.

You can pass a number to this routine from your own non-modal windows if you want to later be able to
determine if they are front most.

Foundation Developer Reference 1 General Component

Fnd_Gen_ CurrentTable

Fnd_Gen_CurrentTable ({->table}) = Pointer

Parameter Type Description
table Pointer Pointer fo the table to make current (optional)
Function result Pointer Current table

Rather than using 4D’s DEFAULT TABLE command and Current default table function,
Foundation maintains a variable to a pointer to the current table for each process.

You can get the value of this pointer by calling this method without any parameters. If no table is current,
a nil pointer is returned.

Pass a pointer to a table to this routine to set it as Foundation’s current table for the current process.

$tablePtr:=Fnd_Gen_CurrentTable
DELETE RECORD($tablePtr->)

or
DELETE RECORD(Fnd_Gen_CurrentTable ->)

Fnd_Gen_FileName

Fnd_Gen_FileName (path) = Text

Parameter Type Description
path Text Full path name
Function result Text File name at the end of the pathname

To get the name of a file from a full file path, pass the path to this function.

$title:=Fnd_Gen_FileName (Document)
SET WINDOW TITLE(S$title)

Foundation Developer Reference 112 General Component

Fnd_Gen_FormMethod

Fnd_Gen_FormMethod

Parameter Type Description
No parameters required.

This method is designed to be called from any non-modal forms in the application. It checks to see if the
close box has been clicked, or if another process has requested the window to close.

Any non-modal forms added to a Foundation database should call this method with the following form
events enabled:
On Activate

On Ouiside Call
On Close Box

Fnd_Gen_ GetDatabaselnfo

Fnd_Gen_GetDatabaselnfo (info type) = Text

Parameter Type Description
info type Text Info type label
Function result Text Value

4D’s component architecture does not allow variables to be shared between components. That is a good
thing, but it requires us to find another way to share information between components. In Foundation,
we do this with the Fnd_Gen_SetDatabaselnfo and Fnd_Gen_GetDatabaselnfo methods.

Foundation maintains a set of text arrays to store general information about the shell. Information
is added to these arrays using the Fnd_Gen_SetDatabaselnfo method, and you can get at this
information using the Fnd_Gen_GetDatabaselnfo method.

By default, Foundation’s General component stores just one bit of information: the version number of the
Fnd_Gen component.

In the Foundation Shell, the Fnd_Hook_Shell_Setup hook uses the Fnd_Gen_SetDatabaselnfo
method to set up four other pieces of information:

Label Data

DatabaseName The name of the database
DatabaseVersion The version number of the database
DatabaseCopyright The database’s copyright information
DatabaseURL The URL for the About dialog

Foundation Developer Reference 113 General Component

You can store any text information in these variables that you need to share between components. These
routines are designed for storing hard-coded text strings for communication between components. To
store user preference related text strings, use Foundation’s Preferences component.

Fnd_Gen_GetString

Fnd_Gen_GetString (module; lookup code{; param 1{; param 2...}}) = Text

Parameter Type Description

module Text The module name

lookup code Text The lookup code

param 1 .. param 2 Text Replacement parameters (optional)
Function Result Text The localized string

This routine offers a way to get localized OK and Cancel button for a dialog without requiring
Foundation’s Localization component. Pass it the internal string label, and this routine gets the associated
string from the 4D application. Optional replacement strings may be passed as parameters 3 through 5.
See documentation for Fnd_Loc_GetString for complete description.

Here is a list of the labels this command accepts, and the English versions of the associated button labels:

Internal Label Button Label
0K 0K

Cancel Cancel
DontSave Don't Save
Stop Stop

$windowTitle_t:=Fnd_Gen_GetString ("Fnd_Rec";"ModWindowTitle")

Fnd_Gen_Info

Fnd_Gen_Info (info requested) = Text

Parameter Type Description
info requested Text Info desired
Function Result Text Response

This function returns the requested information about the General component.

$version_t:=Fnd_Gen_Info ("version")

The Fnd_Gen_Info method will respond to these requests:

Request Response Example
name The component's full name Foundation General
version The component's version number 414

Foundation Developer Reference 114 General Component

See the Fnd_Gen_Componentinfo method for more information.

Fnd_Gen_ LaunchAsNewProcess

Fnd_Gen_LaunchAsNewProcess (method; process name) = Boolean

Parameter Type Description

name Text The name of the method to launch
process name Text Name to give the new process
Function result Boolean True if we are in a new process

The Fnd_Gen_LaunchAsNewProcess method launches the specified process as a new process. If the
process is already running, it is just brought to the front.
This process is designed so a method can launch itself in a new process. It is used like this:

If(Fnd_Gen_LaunchAsNewProcess ("ThisMethodName";"$New process name"))
" Any code placed here will run in the new process.
End if

See the source to Foundation’s Fnd_Art_About method to see a more complete example.

Foundation Developer Reference 115 General Component

Fnd_Gen_MenuBar

Fnd_Gen_MenuBar

Parameter Type Description
No parameters required.

Instead of calling 4D’s MENU BAR command, call the Fnd_Gen_MenuBar routine to install and
update Foundation’s menu bar when you display a window in a new process. In addition to calling the
MENU BAR command, this routine will localize the menus (using the Localization component, if
available), enable and disable the appropriate menu items, and update the Window menu.

Fnd_Gen_ Platform

Fnd_Gen_Platform = Number

Parameter Type Description
Function result Longint Platform number

This function returns the platform number from 4D’s PLATFORM PROPERTIES command. This
allows you to easily distinguish between Mac OS X and Windows.

Case of
: (Fnd_Gen_Platform =Windows)
* We are using Windows
: (Fnd_Gen_Platform =Mac 0S)
* We are using Mac 0S X

End case

Foundation Developer Reference 116 General Component

Fnd_Gen_PluglnAvailable

Fnd_Gen_PlugInAvailable (plugin name) = Boolean

Parameter Type Description
plugin name Text Name of the plugin
Function result Boolean True if the plugin is available

This function returns True if the specified plugin is installed. The plugin name must be passed exactly as
shown in the list below.

This routine is only aware of a limited number of plugins. Please contact us if you would like support for a
specific plugin added to this routine.

This routine can currently test for the following plugins:

Foundation Exiras
4D View

4D Write

4D Draw
ToolboxPack

Currently this routine can only detect the English versions of the above 4D plugins (4D View, 4D Write,
and 4D Draw).

Fnd_Gen_QuitNow

Fnd_Gen_QuitNow ({quit?}) = Boolean

Parameter Type Description
quit? Boolean Cause Foundation to quit now? (opfional)
Function result Boolean True if it is time to quit

This routine has two different formats.

If you create a background process that runs until the user selects Quit, you should call this method on a
regular basis. If you do not pass a parameter to this method, it will return True if the user is trying to quit
the application. When Foundation tries to quit, it will wake any paused or delayed processes so they can
check the value returned by this function.

While(Not(Fnd_Gen_QuitNow))

* Do background stuff here.
End if

The second way to use this routine is to use it to tell Foundation you want to quit the application, just
as if the user had selected Quit from the File menu. Just pass True to the method, and Foundation will
attempt to quit all processes, and then call QUIT 4D (if the database is compiled).

Fnd_Gen_QuitNow (True)

Foundation Developer Reference 17 General Component

Fnd_Gen_ RemoveActivationCode

Fnd_Gen_RemoveActivationCode

Parameter Type Description
No parameters required.

This method removes the activation code from the database structure file so the developer can share the
source code with the Foundation components installed. This method can be called from Menu Bar #1

in the Custom Menus environment if you are using the Foundation Shell. This is found under the Tools
menu.

Fnd_Gen_Reset

Fnd_Gen_Reset

Parameter Type Description
No parameters required.

Fnd_Gen_Reset resets all of the available Foundation components. This routine does not actually clear
any variables, it just flags them as needing to be re-initialized, so the next time each component is used, it
will reset its own variables.

The Foundation Shell calls this method when you quit, so the variables are all reset when you restart
Foundation during development.

Fnd_Gen_SelectionChanged

Fnd_Gen_SelectionChanged

Parameter Type Description
No parameters required.

If your code changes the current selection of records displayed in an output form, call this routine at the
end of your method to let Foundation know about the change. This routine will ensure that the menus
and toolbar buttons are properly updated for the contents of the current selection.

This method calls the Fnd_Hook_IO_SelectionChanged hook.

Foundation Developer Reference 118 General Component

Fnd_Gen_ SetDatabaselnfo

Fnd_Gen_SetDatabaselnfo (info type; value)

Parameter Type Description
info type Text Info type label
valve Text Info value

Use this routine to set text values that can be later tested from other components using the
Fnd_Gen_GetDatabaselnfo method. You can set and get any type of text information using this
routine. Set values are available to all processes.

Fnd_Gen_SetDatabaselInfo("SecretCodeWord";"firefox")

See the Fnd_Gen_GetDatabaselnfo method for more information.

Foundation Developer Reference 119 General Component

Input/Qutput Component
(Fnd_I0)
’:[;16 Foundation IO component is responsible for displaying input forms and output forms. It has been

designed specifically for use with the Foundation Shell. It is not intended to be used in other database
projects.

Installation

It contains no tables or forms, and no additional steps are required after installation.
The IO component stores information in a database table.

4D v11 does not allow tables in components. To work around this problem, the Foundation components
do not include any 4D tables. Instead, you will need to add any required tables to your structure before
using the component. Internally the components create pointers to the structure’s tables and fields and
then uses these throughout the code.

Foundation Developer Reference 120 Input/Output Component

(reate the [Fnd_Pref] Table

To use the Foundation Preferences component, you will first need to add a table to your structure.

You can simply copy the [Fnd_Pref] table from the Product Sales.4DB sample file, or you can create

it manually in 4D (this is a good opportunity to reuse an unused or deleted table). The table must be
named “Fnd_Pref” and must contain the fields listed below. The order of the fields is not important, and
it is okay if the table contains other unused fields (in case you are reusing a table). However, the field
names and types must be set up exactly as shown below.

Field Nome Type Attributes
[Fnd_Pref]ID Long Infeger

[Fnd_Pref]Owner Alpha 80 Indexed
[Fnd_Pref]Name Alpha 80 Indexed
[Fnd_Pref]Type Infeger

[Fnd_Pref]Value Text

Install the Component

The Foundation Preferences component requires the following components (shown with minimum
required version numbers). It also requires version 4.2 or later of the Foundation Extras plugin.

Component Minimum Version
Fnd_Gen 42
Updating the Component

If you later upgrade (or reinstall) the component, you will be asked if you want to update the public
Fnd_Pref Preferences form. Click Yes if you have not customized this form for your application, or if
you wish to revert to the default layout. Otherwise click No to preserve any changes you may have made.

Updating the Component

The component’s “Fnd_Menu” menu bar has public access, so that you can modify it to meet your
needs. You can safely add and delete menu items using the 4D Menu Editor. So be sure to backup your
structure before upgrading this component to ensure you can restore your changes if necessary.

Language Reference

Here is the list of routines in Foundation’s IO component:

Fnd_Hook_l0_DisplayRecord Fnd_l0_InputFormMethod
Fnd_Hook_l0_DisplayTable Fnd_l0_InputFormName
Fnd_Hook_I0_InputFormButton Fnd_10_MultiWindow
Fnd_Hook_l0_SelectionChanged Fnd_10_OutputFormMethod
Fnd_10_AddMultipleRecords Fnd_10_OutputFormName
Fnd_10_DisplayRecord Fnd_10_RecordEdited
Fnd_l0_DisplayNavButtons Fnd_10_ToolbarlconGroup

Foundation Developer Reference 121 Input/Output Component

Fnd_10_DisplayTable Fnd_10_UpdateToolbar
Fnd_10_Info

Fnd_Hook_10_DisplayRecord

Fnd_Hook_l0_DisplayRecord

Parameter Type Description
No parameters required.

This hook is called just before an input window is displayed. Here you can set the window title or
position, or specify the input form to use.

Use the Fnd_Gen_CurrentTable method to determine the current table.

The following example uses this hook to set the window title to something other than the default window
title selected by Foundation.

Case of
: (Fnd_Gen_CurrentTable=(->[Products])
Fnd_Wnd_Title ([Products]Product Name)
End case

Fnd_Hook_l0_DisplayTable

Fnd_Hook_l0_DisplayTable

Parameter Type Description
No parameters required.

This hook is called just before an output window is displayed. Here you can set the window title or
position, or specify the output form to use.

Use the Fnd_Gen_CurrentTable method to determine the current table.

Fnd_Hook_I0_InputFormButton

Fnd_Hook_l0_InputFormButton ({button}) = Boolean

Parameter Type Description
enable Boolean True to enable adding multiple records (optional)
Function result Boolean True if this feature is enabled

Foundation Developer Reference 122 Input/Output Component

This hook is called when a button on the inherited form named Fnd_IO_InputForm is clicked. It
receives as the a parameter the name of the button that was clicked. The name will be one of these text
values:

Button Names

save
cancel
first
previous
next
last

Return True in $0 to allow Foundation to handle the click and perform the standard action. Return
False to prevent Foundation from acting on the click.

C_BOOLEAN($0;%allow)
C_TEXT($1;%$action)

$action:=$1
$allow:=True
Case of
: (Fnd_Gen_CurrentTable =(->[Invoices]))
Case of
: ($action="save")

If(Not(User in group(Current user;"Accounting"))
Fnd_DlIg_Alert ("You are not authorized to modify invoice records.")
$allow:=False

End if

End case
End case

$0:=%allow

Use the Fnd_Gen_CurrentTable method to determine the current table.

Fnd_Hook_10_SelectionChanged

Fnd_Hook_|0_SelectionChanged

Parameter Type Description
No parameters required.

This hook is called any time the current selection of records displayed in an output list has changed. You
can filter the selection here (remove records the user should not see), sort the selection, etc. from this
hook.

Use the Fnd_Gen_CurrentTable method to determine the current table.

The following example uses this hook to remove discontinued items from the selection of products
displayed in the output form.

Foundation Developer Reference 123 Input/Output Component

Case of
: (Fnd_Gen_CurrentTable =(->[Products]))
QUERY SELECTION([Products];[Products]Discontinued=False)
End case

Fnd_l0_AddMultipleRecords

Fnd_l0_AddMultipleRecords ({enable}) = Boolean

Parameter Type Description
enable Boolean True to enable adding multiple records (optional)
Function result Boolean True if this feature is enabled

By default, Foundation’s Fnd_IO_DisplayRecord command adds one record, then either closes
the input window or returns to the output list (depending on the current configuration — see the
Fnd_IO_MultiWindow command). This command can be used to modify this behavior so that
Foundation behaves similarly to 4D’s User environment.

Passing True to this command will cause Foundation to continuously add new records
until the input button’s Cancel button is clicked. This command can be called from the
Fnd_Hook_IO_DisplayRecord hook:

Fnd_IO_AddMultipleRecords (True)
This command will affect only the current process.

This routine can also be called as a function to determine the current configuration:
$addingMultipleRecs: =Fnd_IO_AddMultipleRecords

Fnd_l0_DisplayRecord

Fnd_l0_DisplayRecord ({->table{; record number}})

Parameter Type Description
table Pointer Pointer fo the record's table (optional)
record number Longint Record number (optional)

Displays the specified record of the table in a new process. If no table is passed, then the current form’s
table is used (if available). If no record number is passed, then the current record will be displayed (if
there is one). Pass 4D’s New record constant as the record number parameter to create a new record.

Just after this routine launches a new process, and just before it opens a window, the
Fnd_Hook_IO_DisplayRecord hook is called.

Foundation Developer Reference 124 Input/Output Component

Fnd_10_DisplayNavButtons

Fnd_l0_DisplayNavButtons ({enable}) = Boolean

Parameter Type Description
enable Boolean True to display the navigation buttons(optional)
Function result Boolean True if enabled

Fnd_IO_DisplayNavButtons allows the developer to display or hide the input form record navigation
buttons for the current process.

Fnd_IO_DisplayNavButtons (False) ° Do not display the navigation buttons.

This command will affect only the current process. It can be called from the
Fnd_Hook_IO_DisplayRecord hook.

This routine can also be called as a function to get the current state of this setting.

$displayNavButtons:=Fnd_IO_DisplayNavButtons

Fnd_10_DisplayTable

Fnd_l0_DisplayTable (->table{; force new window})

Parameter Type Description
table Pointer Pointer to the table to display
force new window Boolean Open a new window (optional)

Pass a table pointer to the Fnd_IO_DisplayTable method whenever you want to display a new table
window. If a window already exists for the specified table, it will be brought to the front. If a window is not
already open to display the table, this routine will start a new process, open a new window, and display
the specified table using the table’s output form:

Fnd_IO_DisplayTable (->[People])

You can optionally force the Fnd_IO_DisplayTable method to open a new table window—even if one
is already open—by passing a second parameter. If the second parameter evaluates to True, then a new
process will be created to display the table. Otherwise, a new process will be created only if one does not
already exist:

Fnd_IO_DisplayTable (->[People];True)

If you want to open a table window at startup, call this method from the Fnd_Hook_Shell_Startup
method.

Foundation’s Navigation Palette buttons and the Open Table Dialog call the this method to display table
windows.

Foundation Developer Reference 125 Input/Output Component

By default, the selection of records for the new window will contain all of the table’s records. You can
change this selection before the window is displayed in the Fnd_Hook_IO_DisplayTable hook. The
hook is called just after this routine launches a new process, and just before it opens a window.

Fnd_10_Info

Fnd_I0_Info (info requested) = Text

Parameter Type Description
info requested Text Info desired
Function Result Text Response

Returns the requested information about the component.

$version_t:=Fnd_IO_Info ("version")

The Fnd_IO_Info method will respond to these requests:

Request Response Example
name The component's full name Foundation General
version The component's version number 41

This routine can also be called using the Fnd_Gen_Componentinfo method without first testing to see
if the component is installed:

$version_t:=Fnd_Gen_ComponentInfo ("Fnd_Gen";"version")

See the Fnd_Gen_Componentinfo method for more information.

Fnd_l0_InputFormMethod

Fnd_I0_InputFormMethod

Parameter Type Description
No parameters required.

The Fnd_IO_InputFormMethod method must be called from the form method of each input form
that will be displayed in the Custom Menus environment. This method makes sure that the menus get
updated when the form is displayed and when its window is brought to the front from behind other
windows.

It also ensures that the window gets closed properly when the user quits from the database or when the
Close All Windows command is selected from the Window menu.

This method assumes these form events are enabled:

On Activate

Foundation Developer Reference 126 Input/Output Component

On Close Box
On Deactivate
On Load

On Outside Call
On Resize

Fnd_10_InputFormName

Fnd_I0_InputFormName ({form name}) = Text

Parameter Type Description
form name Text The new input form name (optional)
Function result Text The input form name

This method allows the developer to get and set the name of the form to use for any input screens
opened by the current process. To set the name of the next input form name to use, pass the input form
name to this routine from the Fnd_Hook_IO_DisplayRecord hook.

Fnd_IO_InputFormName ("AdminInput")

No parameter is needed when using this method as a function to determine the currently set form name:

$currentFormName:=Fnd_IO_InputFormName

Fnd_10_MultiWindow

Fnd_I0_MultiWindow ({enable}) = Boolean

Parameter Type Description
form name Text True to enable multiple window mode (optional)
Function result Boolean True if multiple window mode is enabled

By default, Foundation displays input forms in a new process and window. This routine allows the
developer to change this behavior so that input forms are displayed in the same process and window as
the output form when double-clicking on a record in an output list.

Pass True to enable multi-window mode, or pass False to disable multi-window mode.

Fnd_IO_MultiWindow (True)

This command will affect only the current process. It can be called from the
Fnd_Hook_IO_DisplayTable hook.

This routine can also be called without any parameters to determine the current setting:

Foundation Developer Reference 127 Input/Output Component

$multiWindowMode:=Fnd_IO_MultiWindow

Fnd_10_OutputFormMethod

Fnd_I0_OutputFormMethod

Parameter Type Description

No parameters required.

The Fnd_IO_OutputFormMethod method must be called from the form method of each output

form that will be displayed in the Custom Menus environment. This method makes sure that the menus
get updated when the form is opened and when its window is brought to the front from behind other
windows. It also ensures that the window gets closed properly when the user quits from the database, or
when the Close All Windows command is selected from the Window menu.

It can be called as the only line of code in an output form, or before or after your own form method code.

This method assumes these form events are enabled:

On Load

On Unload

On Clicked

On Outside Call
On Double Clicked
On Activate

On Deactivate

On Resize

On Close Box

On Header

Fnd_l0_OutputFormName

Fnd_l0_OutputFormName (form name) = Text

Parameter Type Description
name Text Output form name (optional)
Function result Text The current output form name

Call this method to set the name of the next output form to use. If you are using the Foundation Shell,
you can call this method from the Fnd_Hook_IO_DisplayTable hook.

Fnd_IO_OutputFormName ("AccountingOutput")

This routine may also be called as a function to get the current output form name.

Foundation Developer Reference 128 Input/Output Component

$outputForm:=Fnd_IO_OutputFormName

Fnd_10_RecordEdited

Fnd_I0_RecordEdited ({->table; calling process}) = Longint

Parameter Type Description

table Pointer A pointer to the new record’s table
calling process Longint The process number of the output form
Function result Longint The record number that should be added

This command is designed primarily for Foundation’s internal use, but it has been made available for use
by replacements for Foundation’s default input and output handling routines.

Call this when a new record has been added or modified. Pass it the new record number and the number
of the process that should be notified about this updated record. This method will call the other process,
which can then get the value by calling this method without any parameters.

When this method is called without any parameters (due to an On Outside Call event usually), it will
clear the value, so another outside call will not return the same number again.

If no record has been added, this routine will return -1, which is 4D’s No Current Record constant.

See the Foundation Construction Set for an example.

Fnd_10_ToolbarlconGroup

Fnd_l0_ToolbarlconGroup ({style name}) = Text

Parameter Type Description
style name Text The button style name to use (optional)
Function result Text The current style

This command changes the icons used when displaying the output form toolbar. The default style is
“bold.” Use this command to switch the icon group to any of the other groups:

Icon Groups

Bold
Card
Native
Mac
Win

For example, this would switch the output toolbar icon group to “Card”:

Foundation Developer Reference 129 Input/Output Component

Fnd_IO_ToolbarIconGroup ("Card")

This command will affect only the current process. It can be called from the
Fnd_Hook_IO_DisplayTable hook.

Here is what the different groups look like:

Icon Group: Bold

The icon group is not affected by the toolbar size. This command can be combined with calls to the
Fnd_Tlbr_Style and Fnd_Tlbr_Platform commands.

Icon Group: Bold
Style: Small2

Icon Group: Card

Foundation Developer Reference 130 Input/Output Component

Icon Group: Native or Win

Icon Group: Native or Mac

The “Native” platform will automatically select either the “Win” or “Mac” group for you, depending on the
current platform. This toolbar style works only with the large toolbar size.

This routine can also be called without any parameters to determine the current setting:

$iconGroupName:=Fnd_IO_ToolbarIconGroup

Fnd_10_UpdateToolbar

Fnd_|0_UpdateToolbar

Parameter Type Description
No parameters required.

Enables and disables the toolbar buttons based on the current selection of records and whether or
not any records are highlighted. Generally there will be no need to ever call this method. It is available
primarily so that it can be used by the optional Foundation Grid component.

Foundation Developer Reference 131 Input/Output Component

Lists Component
Fnd_List

There are three main parts of Foundation’s Lists component. First, the component can automatically
update 4D lists when a new structure is delivered, so the user’s changes are not lost. The component also
provides editors for these lists so they can easily be modified in the Custom Menus environment. And
finally, the Lists component offers two easy to use choice list dialogs.

Automatic 4D List Updating

Since 4D lists are stored in the database’s structure file, any changes made by end users are usually lost
when a new structure is delivered. Foundation solves this problem by copying a lists contents to records
in the data file. The next time the database is launched, Foundation compares a date/time stamp in the
structure file with a date/time stamp in the data file. If they do not match, Foundation updates the lists in
the structure file with the lists in the data file.

To take advantage of this feature, you must call the Fnd_List_OnStartup method in the database’s
startup method, and then call the Fnd_List_OnExit method in the On Exit database method. If you
are using the Foundation Shell, these methods are called for you automatically. Then pass the name of
any list you want Foundation to manage to the Fnd_List_AddToListEditor method. This makes the
list available in Foundation’s List Editor window, and tells Foundation to preserve the user’s version

Foundation Developer Reference 132 Lists Component

of the list when the structure is updated. If you are using the Foundation Shell, you can do this in the
Fnd_Host _List_SetEditableLists hook.

4D Lists Editor

Foundation Lists offers a list editor to allow end users to edit multiple 4D lists in a single non-modal
window. To display a list of all of the end user editable lists in the database, call the Fnd_List_Editor
method. This will display the List Editor window:

LZech Kepublic

Denmark

Finland

France

Cermany

Greece "

Ll wm e L oo

The user can select a list to modify, then add, delete, and edit list items. To add items to this list, pass the
name of the 4D list to the Fnd_List_AddToListEditor method.

Foundation Developer Reference 133 Lists Component

Single 4D List Editor

You can also display a single list for the user to edit by calling the Fnd_List_EditOne method.

Choice List Dialog

The Lists component also offers a basic choice list dialog that can be used to present a list of options from
which the user can select one item. Here is an example of Foundation’s Choice List dialog:

To display this dialog, just pass a text array to the Fnd_List_ChoiceList function, and it will return the
selected element number.

Foundation Developer Reference 134 Lists Component

Here is the code that was used to create this dialog:

ALL RECORDS([Products])

SELECTION TO ARRAY([Products]ID;$productIDs_ai;[Products]Name;Products_at)
SORT ARRAY(Products_at; $productIDs_ai)

Fnd_Wnd_Title ("Products")
Fnd_List_AddButton ("New Product")
$element_i:=Fnd_List_ChoiceList ("Select a Product...";->Products_at)

Case of
: (OK=1) * A product was selected.
CREATE RECORD([Line Items])
[Line Items]ID:=Sequence number([Line Items])
[Line Items]Product_ID:=$productIDs_ai{$element_i}
SAVE RECORD([Line Items])

: (OK=2) * The "New" button was clicked.

Fnd_IO_DisplayRecord (->[Products];New record)
End case

Notice that the New Product button shown here is both optional and completely under the developer’s
control. This optional third button can have any label, and do anything when clicked (although it will
always close the choice list dialog first).

Command Dialog

Administration

Edit Company Information
Password Editor

List Editor

Sequence Number Editor

The Fnd_List_ CommandDialog allows you to present the user with a list of actions to take (it

uses the Fnd_List_ChoiceList function), and then executes the selected action. The Foundation

Shell uses this feature to present the Administration, Print, and Special Functions dialogs. Just call the
Fnd_Host List_SetEditableLists method once for each item you want to add to the list, then call the
Fnd_List_CommandDialog method.

Foundation Developer Reference 135 Lists Component

Here is the code that was used to display the above dialog:

Fnd_List_AddItem ("Edit Company Information";"Company_EditSettings")
Fnd_List_AddItem ("Password Editor";"EDIT ACCESS")

Fnd_List_AddItem ("List Editor";"Fnd_List_Editor")

Fnd_List_AddItem ("Sequence Number Editor";"Fnd_SqgNo_Editor")
Fnd_List_CommandDialog

Installation

This section describes how to install the Fnd_List component into a database that is not based on
the Foundation Shell. If you started your project using the Foundation Shell, the Sequence Numbers
component is already installed and integrated into your database.

The Sequence Numbers component stores information in a database table.

4D v11 does not allow tables in components. To work around this problem, the Foundation components
do not include any 4D tables. Instead, you will need to add any required tables to your structure before
installing the component. Internally the components create pointers to the structure’s tables and fields
and then uses these throughout the code.

Create the [Fnd_List] Table

To use the Foundation Lists component, you will first need to add a table to your structure. You can
simply copy the [Fnd_List] table from the Product Sales.4DB sample file, or you can create it manually in
4D (this is a good opportunity to reuse an unused or deleted table). The table must be named “Fnd_List”
and must contain the fields indicated below. The order of the fields is not important, and it is okay if the
table contains other unused fields (in case you are reusing a table). However, the field names and types
must be set up exactly as shown below.

Field Name Type Attributes
[Fnd_List]ID Long Integer Indexed
[Fnd_List]List_Name Alpha 80 Indexed
[Fnd_List]List_Blob BLOB

Foundation Developer Reference 136 Lists Component

Install the Component

The Foundation Lists component requires the following components (shown with minimum required

version numbers). It also requires version 4.2 or later of the Foundation Extras plugin.

Component

Fnd_Gen
Fnd_Dlg
Fnd_Wnd

After you have added the [Fnd_List] table to your structure, install the Fnd_List component.

Updating the Component

If you later upgrade (or reinstall) the component, you will be asked if you want to update the public

Minimum Version

4.2
413
414

Fnd_List_Preferences form. Click No to preserve any changes you may have made to this form. Click
Yes only if you have not customized this form for your application, or if you wish to revert to the default

layout.

If you are upgrading a database that currently has version 4.1.4 or earlier of the Foundation Lists

component, you will need to first uninstall that component, then install the 4.2 or later version. The 4.2

and later versions cannot directly update an existing older version of the component.

Removing the earlier version of the component (which included a table) will leave a table named

“Deleted table” in your structure. After installing the new version of the component, launch 4D and switch
to the Design environment (ignore the error messages that will be displayed). Change the name of the
deleted table that looks like the one shown here back to “Fnd_List.” Then quit and relaunch 4D. This time

the database should launch without errors.

| Deleted table

L

List_Mame

ABD

List_Blob

X

Foundation Developer Reference

137

Lists Component

Language Reference

Here are the routines in the Foundation Lists component:

Fnd_Host_List_SetEditableLists Fnd_List_EditOne
Fnd_List_AddButton Fnd_List_Editor
Fnd_List_Addltem Fnd_List_Info
Fnd_List_AddToListEditor Fnd_List_OnExit
Fnd_List_ChoiceList Fnd_List_OnStartup

Fnd_List_CommandDialog

Fnd_Host_List_SetEditableLists

Fnd_Host_List_SetEditableLists

Parameter Type Description
No parameters required.

This hook gives you a place to call the Fnd_List_AddToListEditor method. This hook is called during
the startup process by Foundation.

Fnd_List_AddTolListEditor ("Invoice Terms")
Fnd_List_AddTolListEditor ("Country Names")

Fnd_List_AddButton

Fnd_List_AddButton (button label)

Parameter Type Description
button label Text The new button’s label

The Fnd_List_AddButton routine adds a third button to Foundation’s choice list or command dialog.
Pass it the button label to display. If the button is clicked, the dialog will be closed and the OK variable will
be set to 2.

ALL RECORDS([Products])

SELECTION TO ARRAY([Products]ID;$productIDs_ai;[Products]Name;Products_at)
SORT ARRAY(Products_at;$productiDs_ai)

Fnd_List_AddButton ("New Product")
$element_i:=Fnd_List_ChoiceList ("Select a Product...";->Products_at)

Case of
: (OK=1) ° A product was selected.
. Use $element_i to determine the selection.
: (OK=2) * The "New" button was clicked.

End case

Foundation Developer Reference 138 Lists Component

Fnd_List_Addltem

Fnd_List_Addltem (command name; method name)

Parameter Type Description
command name Text Command name to add to the dialog
method name Text Method name to run if command name is selected

The Fnd_List_AddItem routine adds a command to the Command Dialog. Pass it the command name
to display to the user, and the 4D method to call if the command is selected by the user. This routine can
be called multiple times before calling the Fnd_List_CommandDialog command.

Fnd_List_Additem ("Print Sales Report";"PrintSalesReport")

Fnd_List_Additem ("End of Month Report";"PrintEOMReport")
Fnd_List_CommandDialog

Fnd_List_AddToListEditor

Fnd_List_AddToListEditor (list)

Parameter Type Description
list Text Name of the list o make available

The Fnd_List_AddToListEditor routine should called from the Fnd_Host_List_SetEditableLists
method. Any list names passed to this method will become editable by the database administrator in the
Edit Lists dialog.

Fnd_List_AddTolListEditor ("Country Names")

Foundation will also ensure these lists are not replaced when the database structure is updated. It does
this by keeping a copy of the list in the data file. If Foundation determines that the structure file may have
been updated, it copies the stored copy of the list back into the structure file.

See the Fnd_Host_List_SetEditableLists command for an example of this command.

Foundation Developer Reference 139 Lists Component

Fnd_List_ChoicelList

Fnd_List_ChoiceList (prompt; ->text array) = Number

Parameter Type Description

prompt Text Prompt

text array Pointer Pointer to a text array
Function result Number Selected element number

The Fnd_List_ChoiceList allows the user to select an element from a list.

LIST TO ARRAY("MyList";MyTextArray)
Fnd_Wnd_Title ("Choices")
$element_i:=Fnd_List_ChoiceList ("Pick One";->MyTextArray)
If(OK=1)
[Field]Value:=MyTextArray{$element_i}
End if
ARRAY TEXT(MyTextArray;0) ° Clear the array.

Fnd_List_CommandDialog

Fnd_List_CommandDialog

Parameter Type Description
No parameters required.

Fnd_List_ CommandDialog displays the choice list dialog composed by calling the
Fnd_List_AddToListEditor routine. See that command for an example.

The window’s title and position can be set before calling this command using the Foundation Windows
component’s Fnd_Wnd_Title and Fnd_Wnd_Position commands.

Fnd_List_Additem ("Print Sales Report";"PrintSalesReport")
Fnd_List_Additem ("End of Month Report";"PrintEOMReport")
Fnd_List_CommandDialog

Fnd_List_EditOne

Fnd_List_EditOne (list name)

Parameter Type Description
list name Text Name of the list

The Fnd_List_EditOne routine allows the developer to edit the specified list in a semi-modal dialog.
Fnd_List_EditOne ("Country Names")

Foundation Developer Reference 140 Lists Component

Fnd_List_Editor

Fnd_List_Editor

Parameter Type Description
No parameters required.

The Fnd_List_Editor routine displays the List Editor window in a new process. Only 4D lists previously
passed to the Fnd_List_AddToListEditor method will be displayed.

Fnd_List_Info

Fnd_List_Info (info requested) = Text

Parameter Type Description
info requested Text Info desired
Function Result Text Response

Returns the requested information about the component.

$version_t:=Fnd_List_Info ("version")

The Fnd_List_Info method will respond to these requests:

Request Response Example
name The component’s full name Foundation Lists
version The component's version number 4.0.3 alpha 1

This routine can also be called using the Fnd_Gen_Componentinfo method without first testing to see
if the component is installed:

$version_t:=Fnd_Gen_ComponentInfo ("Fnd_List";"version")

See the Fnd_Gen_Componentinfo method for more information.

Foundation Developer Reference 141 Lists Component

Fnd_List_OnExit

Fnd_List_OnExit

Parameter Type Description
No parameters required.

The Fnd_List_OnExit routine stores the current date and time in both the structure file (as a list) and
the data file (as a record). We can compare these at startup to determine if the structure file has been
updated.

Normally this command should be added to the On Exit and the On Server Shutdown database
methods.

If you are using the Foundation Shell, this method is called automatically by the Fnd_Shell component.

Fnd_List_OnStartup

Fnd_List_OnStartup

Parameter Type Description
No parameters required.

The Fnd_List_OnStartup routine is called when the database is launched to determine if the lists in the
structure file need to be updated from the lists in the data file. Normally this command should be called
from the On Startup and On Server Startup database methods.

If you are using the Foundation Shell, this method is called automatically by the Fnd_Shell component.

Foundation Developer Reference 142 Lists Component

Localization Component
Fnd_Loc

’:[;16 Foundation Localization component allows the Foundation Shell and

other Foundation Components to display buttons, labels, and messages in

languages other than English. It looks up localized strings, resizes buttons and other form objects to
display text of any length, and more.

The Foundation Localization component requires only the Foundation General component if installed in
a database other than the Foundation Shell.

How Foundation Handles Localization

4th Dimension allows the developer to use Macintosh string resources to localize menus, button labels,
and other objects in the 4D form editor. However, working with Macintosh string resources is not always
easy for Windows developers. And string resources are better suited towards static localization (creating
one structure file for each language) rather than creating a single structure that is localized on-the-fly.

Instead, Foundation’s localization strings are stored as 4D Lists. Each component maintains its own set of
localized strings in a set of 4D lists. At least two lists are required for localization. One list of lookup codes,
and one list of localized codes for English. Any number of additional lists can also be used to localize the
component for another language.

Foundation Developer Reference 143 Localization Component

The list of lookup codes and the list of localized strings must remain synchronized. That is, for each item
in the lookup code list, there must be a matching item in the localized string list.

The lookup code list generally shares the component’s short name. For example, the lookup list for
the Foundation Art component is named “Fnd_Art.” The localized string list starts with the name of the
lookup code list, plus an underscore and a two letter language code. “EN” is used for English.

For example, Foundation’s Dialog component contains a lookup code list named “Fnd_Dlg” that looks
something like this:

“Fnd_Dlg" list

0K
Cancel
Stop
Save
DontSave

Notice that the entries in the lookup code list do not contain spaces. They are generally kept short,
too. So even if a localization list contained a long message, the lookup code would be less than ten
characters. It is also important that you do not duplicate a lookup code within a single lookup code list.
It is not a problem if two different components use the same lookup code.

The lookup code list has a matching localization string list named “Fnd_DIg EN” that looks like this:

“Fnd_Dlg_EN" list

0K

Cancel
Stop

Save
Don't Save

The Foundation Dialog component also include another list of French localizations. It is named “Fnd
Dlg FR”and contains these list items:

“Fnd_DIg_FR" list

0K

Annuler

Arréter
Enregistrer

Ne pas enregistrer

During runtime, the Fnd_Loc_GetString method is used to return localized strings from these lists.
Just pass it the name of the lookup code list, plus the specific lookup code you are interested in:

$localized_t:=Fnd_Loc_GetString ("Fnd_DIg";"DontSave")

In the example above, “Ne pas enregistrer” is returned if you are using the French version of 4th
Dimension, or “Don’t Save” is returned if you are using any other version of 4D. The default is always the
English translation if no list is available for the current language.

To make the lists easier to understand during development, comments can be inserted. These are just
list items that start with “ * " (two spaces, the 4D comment character, and another space) and any text.

Foundation Developer Reference 144 Localization Component

Comments like these should be repeated in each list in the same position. For example, we can add a
“Button Labels” comment to the Foundation Dialogs lists:

“Fnd_Dlg" list “Fnd_Dlg_EN" list “Fnd_Dlg_FR" list
* Button Labels * Button Labels * Button Labels
0K 0K 0K

Cancel Cancel Annuler

Stop Stop Arréter

Save Save Enregistrer
DontSave Don't Save Ne pas enregistrer

The localization strings used by Foundation’s components are stored as Private objects. So you will not
see them when using the components, but you will see them when working with the Foundation source
code.

Modules, Groups, and Lookup Codes

You do not need to have a lookup code list for each component. In fact, you can have lookup code
lists that are not related to a component, or multiple lookup code lists for a component. You could
create a lookup code list for buttons and name it “MyButtons,” and another one for messages and call it
“MyMessages.”

The combination of the lookup code list, plus the localized strings list are be referred to as a localization
module. So “MyButtons,” “MyButtons_EN,” and “MyButtons_FR” are referred to as the “MyButtons”
module. The module name is passed as the first parameter to the Fnd_Loc_GetString routine. The
second parameter is the lookup code.

When we add comments to the list, the comments break the lists up into groups. In the Foundation
Dialogs module described earlier, the “Button Labels” comment creates the group “Button Labels.”
Groups are not used at runtime, but they make the lists easier to manage during development. Groups
are also used by the Foundation Localization Editor.

Localization Editor

To help you work with localization lists, the Foundation Localization component includes a Localization
Editor. This dialog can be displayed by selecting Localization Editor from the Tools menu of the Fnd_Shell
menu bar (menu bar #1).

If you have upgraded your database from Foundation 4.0.2 or earlier, you may need to add this menu
item to your Fnd_ Shell menu using 4D’s Menu Bar editor. Just have the new menu item call the Fnd
Loc_Editor method.

The Localization Editor displays the localization modules for all of the Foundation components installed
in your structure file. You can use the editor to modify any of these lists. The editor will actually copy the
private Foundation localization lists in your structure file, then edit the copies. This will allow you to easily
revert to the original localizations just by deleting the copies. The copies have the same names as the
original lists, plus an asterisk.

Foundation Developer Reference 145 Localization Component

You can also use the Localization Editor to add your own localization modules to a database. Just click the
+ button at the bottom of the Modules list. Give the new module a unique name, and then create groups
and lookup codes for your project.

Currently Foundation’s Localization Editor supports only English and French localizations. However, the
Localization component’s methods can handle any number of languages. You will just need to create the
lists for other languages manually, using the 4D List Editor. The Fnd_Loc_DuplicateList method can be
helpful when creating other localization lists.

Important Notes

Keep in mind that the Localization Editor is intended to be used only as a development tool. It does not
contain the extensive error checking required for use by end users.

Alookup code cannot be duplicated within a module, even if it is in a separate group. Having duplicated
lookup codes in different modules is not a problem.

Foundation’s Localization Editor cannot be used when the 4D List Editor window is open, or if there are
other users connected to 4D Server. This is to prevent potential list corruption problems.

You can add an existing module name (it is defined in the 4D lists editor) to the Localization Editor
without losing the existing list. The Localization Editor will copy the contents of the existing list into the
new localization list it creates.

The list editor will always add an asterisk to your list names when saving them. You can leave them
with the asterisk, or remove the asterisk. If you remove the asterisk you will have a backup copy in case
something goes wrong with the list editor.

Any list beginning with “Fnd_" and ending with an asterisk can be safely deleted. It is a copy of a
Foundation list. If the asterisk version is deleted, the component’s Private list will be used.

Although the editor will allow you to add and remove items from the Foundation localization lists, this is
generally considered a bad idea.

Foundation’s Fnd_Loc_GetString method will always use lists with asterisks if they are available.
Because of this, any Foundation lists you modify with the list editor will override Foundation’s private
lists. If a list with an asterisk is available, the routine will not look for additional information from the list
name without the asterisk.

It is safe to delete the “Fnd_Loc_EditorModules*” list also. It will be recreated the next time the

Localization Editor is used. This list is used only by the Localization Editor — it is not used at runtime.

Localized lists should not be passed to the Fnd_List_AddToListEditor method from the
Fnd_Hook_List_SetEditableLists hook, since this would allow users to unsynchronize the lists.

Here is the list of routines in Foundation’s Localization component:

Fnd_Loc_DuplicateList Fnd_Loc_GetString
Fnd_Loc_Editor Fnd_Loc_Info
Fnd_Loc_FixButtonWidths Fnd_Loc_LanguageCode

Foundation Developer Reference 146 Localization Component

Fnd_Loc_FixLabelWidths

Language Reference

Here are the routines in Foundation’s Localization component:

Fnd_Loc_DuplicateList

Parameter Type Description

No parameters required.

This routine can be used to duplicate a 4D list. It is designed to be called from Foundation’s Fnd_Shell
menu by the developer to assist in creating new localizations. It is not intended to be called procedurally.

To call this method, select Duplicate a 4D List... from Foundation’s Tools menu. A dialog will ask you for
the name of the list to duplicate. Enter the name of an existing 4D list and click OK.

In the next dialog, enter in the name of the new list to create and click OK. The first list will be duplicated
and given this name.

Fnd_Loc_Editor

Parameter Type Description

No parameters required.

Displays the Localization List Editor window in a new process. See the beginning of this chapter for more
information.

Fnd_Loc_ FixButtonWidths

Fnd_Loc_FixButtonWidths (->button1; ->button2{; ->buttonN})

Parameter Type Description

button1..buttonN Pointer Pointers to two or more buttons

Adjusts all of the button widths of two or more vertically aligned buttons so they all have the same
left and right coordinates of the widest button of the group. Designed to be called after calling
Fnd_Loc_DuplicateList on each of the buttons in the group.

Foundation Developer Reference 147 Localization Component

For example, imagine we have three buttons as shown here:

If we use the Fnd_Loc_DuplicateList method to change the button labels to French, the size of the
buttons will all be increased as needed. But after the call, each button will have a different length.

So we pass pointers to each of these buttons to the Fnd_Loc_FixLabelWidths, and each button is set
to the length of the longest button:

Fnd_Loc_FixButtonWidths (->bNew;->bView;->bDelete)

Fnd_Loc_FixLabelWidths

Fnd_Loc_FixLabelWidths (->form object; ->enterable object{; ..repeat..})

Parameter Type Description
S1, 53, $5..5N Pointer The label to adjust
$2, 54, $6..5N+1 Pointer The field to its right

One of the problems with localizing field labels is that if you make the label large enough for one
language, it may appear too large for other languages. And even if you resize the label object, you must
also reposition the field next to it. However, if you do this for each label/field combination individually,
you will end up with fields that are no longer aligned.

One solution is to use multiple pages or multiple forms — one for each language. But this can be a
maintenance problem for complex layouts. Another solution is to use the Fnd_Loc_FixLabelWidths
method to resize multiple labels and fields in a single call.

Pointers to 4D form objects are passed to this routine in sets of two. One for the label, and one for the
field. This routine will move the right side of the label so that the entire label text fits. It will then adjust
the left side of the field the same amount, so that the space between the label and the field remains
unchanged.

If multiple sets of label and field pointers are passed, the widest label is used for adjusting all of the
objects.

For example, imagine we have this English set of fields on a form:

We start by replacing the static text labels with variables, so we can pass pointers to these objects

to the Fnd_Loc_FixLabelWidths method. Then we localize the labels using Foundation’s
Fnd_Loc_GetString function.

Now the labels are correct, but the colon has been truncated on some of the labels. So we pass the three
labels on the left, along with their associated fields, to the Fnd_Loc_FixLabelWidths method in a single
call:

Foundation Developer Reference 148 Localization Component

Fnd_Loc_FixLabelWidths (->vNumberLabel;->[Products]Number;
->vNamelabel;->[Products]Name;->vDesclLabel;->[Products]Desc)

Now the labels on the left are properly displayed. The width of the label objects has been increased
slightly, and the width of the corresponding fields has been reduced by the same amount. The amount of
the change is based on the content of the labels.

Now we just need to apply the fix to the List Price label and field:
Fnd_Loc_FixLabelWidths (->vPriceLabel;->[Products]ListPrice)

See the Product Sales example database to see this command in action.

Fnd_Loc_GetString

Fnd_Loc_GetString (module; lookup code{; param 1{; param 2...}}) =» Text

Parameter Type Description

module Text The module name

lookup code Text The lookup code

param 1..param 2 Text Replacement parameters (optional)
Function Result Text The localized string

This routine returns a localized string based on the internal string or label. Foundation’s Language Code
is used to determine which language string to return. See the Fnd_Loc_LanguageCode method for
more information.

Foundation stores localization strings as 4D lists. These lists can be edited directly in the 4D List Editor, or
using Foundation’s Localization Editor. See the detailed description at the beginning of this chapter.
To use this method, pass it the module name and the lookup code:

$localized_t:=Fnd_Loc_GetString ("MyModule";"ProductNamelable")

You can optionally pass additional text parameters to insert into the string. For example, you may want
to localize a string like “You have 10 days remaining” where the number of days is calculated, rather than
fixed. To do this, create a localized string with “<<1>>"in it. This will be replaced by the first optional
parameter to this call.

In this example, imagine we have a localized string named “DaysRemaining” with this content:
“You have <<1>> days remaining.”

Just pass the number of days (as a string) as the third parameter to Fnd_Loc_GetString:
$days:=String(vDays)
$localized_t:=Fnd_Loc_GetString ("MyModule";"DaysRemaining"; $days)

You can do this replacement for any number of optional parameters. For the second optional parameter
use “<<2>>"then “<<3>>"for the third, etc.

Foundation Developer Reference 149 Localization Component

Fnd_Loc_Info

Fnd_Loc_Info (info requested) =» Text

Parameter Type Description
info requested Text Info desired
Function Result Text Response

Returns the requested information about the component.

$language_t:=Fnd_Loc_Info (“language”)

The Fnd_Loc_Info method will respond to these requests:

Request Response Example

name The component’s full name Foundation Localization
version The component's version number 4.0.3beta 1

language The currently selected language code EN

This routine can also be called using the Fnd_Gen_Componentinfo method without first testing to see
if the component is installed:

$language_t:=Fnd_Gen_ComponentInfo ("Fnd_Loc";"language")

See the Fnd_Gen_Componentinfo method for more information.

Fnd_Loc_LanguageCode

Fnd_Loc_LanguageCode ({code}) => Text

Parameter Type Description
code Text The language code fo use (optional)
Function Result Text The current language code

If no parameters are passed, this routine returns the current language code that Foundation is using for
localization.

$languageCode:=Fnd_Loc_LanguageCode

If a language code is passed to this routine, it is set as the new localization code.
Fnd_Loc_LanguageCode ("FR")

If you are working with a database that may not have the Foundation Language component installed, you
can just call the Fnd_Gen_Componentinfo routine like this:

Foundation Developer Reference 150 Localization Component

$languageCode:=Fnd_Gen_ComponentInfo ("Fnd_Loc";"language")

The Foundation General component will then test to see if the Localization component is installed, and
if so, return the current language code. If the Localization component is not installed, “Component Not
Available” will be returned.

Foundation Developer Reference 151 Localization Component

Log Component
Fnd_Log

’:[;16 Log component provides logging capabilites to track any events in your

database. You can call these commands from anywhere in your database. The log file name will consist of
the name of your Structure file.log on Mac OS X and Structure file.txt on Windows. It will be created in
the Get 4D folder on Windows and Logs folder inside your 4D preferences folder on Mac OS X.

Language Reference

Here are the routines in Foundation’s Log component:

Fnd_Log_AddEntry Fnd_Log_Info
Fnd_Log_Enable

Foundation Developer Reference 152 Log Component

Fnd_Log_AddEntry

Fnd_Log_AddEntry (text1{; text2..texiN})

Parameter Type Description
textl Text Text to be placed in the log

The Fnd_Log_AddEntry routine places the text parameters into an external text file. It is safe to call
this routine even if we are not currently logging activity.

Fnd_Log_AddEntry("An error has occurred in method: "+ Current method name+".")

Fnd_Log_Enable

Fnd_Log_Enable ({enable?}) =» Boolean

Parameter Type Description
enable Boolean True to enable logging (optional)
Function result Boolean True if logging is enabled

This function allows the developer to turn logging on or off. This function returns true if logging is
currently on.

$isLoggingOn_b:=Fnd_Log_Enable " Also turns logging on

Fnd_Log_Info

Fnd_Log_Info (info requested) = Text

Parameter Type Description
info requested Text Info desired
Function Result Text Response

Returns the requested information about the component.

$language_t:=Fnd_Log_Info (“language”)

The Fnd_Log_Info method will respond to these requests:

Request Response Example

name The component’s full name Foundation Log
version The component's version number 4.0.3 beta 1
language The currently selected language code EN

Foundation Developer Reference 153 Log Component

This routine can also be called using the Fnd_Gen_Componentinfo method without first testing to
see if the component is installed:

$language_t:=Fnd_Gen_ComponentInfo ("Fnd_Log";"language")

See the Fnd_Gen_Componentinfo method for more information.

Foundation Developer Reference 154 Log Component

Menus Component
(Fnd_Menu)

’:[;16 Menu component has been designed specifically for use with the

Foundation Shell. It is not intended to be used in other database projects.

However, there are some useful commands you may wish to use when working with the Foundation
Shell.

Installation

The Menus component is designed for use only with the Foundation Shell. Therefore, it requires version
4.2 or later of the Fnd_Shell component.

Updating the Component

The component’s “Fnd_Menu” menu bar has public access, so that you can modify it to meet your
needs. You can safely add and delete menu items using the 4D Menu Editor. But be sure to backup your
structure before upgrading this component to ensure you can restore your changes, if necessary.

Foundation Developer Reference 155 Menus Component

Language Reference

The following methods are simply marked as protected so they can be called from the Foundation menu
bar (the menu named “Fnd_Menu”). Although they are not really intended to be called directly, you can
call them to duplicate the behavior of selecting a menu item.

Fnd_Menu_Administration
Fnd_Menu_Delete
Fnd_Menu_Find
Fnd_Menu_ModifyRecords
Fnd_Menu_NavPalette
Fnd_Menu_NewRecord
Fnd_Menu_OmitSubset
Fnd_Menu_OpenTable
Fnd_Menu_Preferences

Fnd_Menu_Print
Fnd_Menu_QueryEditor
Fnd_Menu_Quit
Fnd_Menu_ShowAll
Fnd_Menu_ShowSubset
Fnd_Menu_Sort
Fnd_Menu_SoriOrderEditor
Fnd_Menu_SpecialFunctions
Fnd_Menu_Windowltem

Here are the more useful (and documented) routines in Foundation’s Menus component:

Fnd_Menu_DisableAll
Fnd_Menu_MenuBar
Fnd_Menu_Window_Add

Fnd_Menu_Info
Fnd_Menu_MenuBarName
Fnd_Menu_Window_Remove

Fnd_Menu_DisableAll

Fnd_Menu_DisableAll

Parameter Type Description

No parameters required.

This routine temporarily disables all of the currently displayed menu items. Call it before displaying a
dialog or window which will not respond to menu selections. The menus will be automatically restored
the next time the menu bar is updated. To ensure that the menus remain disabled when the window is
displayed, call this method from the form’s On Activate event after calling Fnd_Gen_FormMethod.

Fnd_Gen_FormMethod
Case of
: (Form event=0n Activate)
Fnd_Menu_DisableAll
End case

Fnd_Menu_Info

Fnd_Menu_Info (info requested) = Text

Parameter Type Description
info requested Text Info desired
Foundation Developer Reference 156 Menus Component

Function Result Text Response

This function returns the requested information about the Menu component.

$version_t:=Fnd_Menu_1Info ("version")

The Fnd_Menu_Info method will respond to these requests:

Request Response Example
name The component's full name Foundation Menus
version The component's version number 412

See the Fnd_Gen_Componentinfo method for more information.

Fnd_Menu_MenuBar

Fnd_Menu_MenuBar

Parameter Type Description
No parameters required.

This routine installs and updates Foundation’s menu bar. In addition to calling the MENU BAR
command, this routine will localize the menus (using the Localization component, if available), enable and
disable the appropriate menu items, and update the Window menu.

If you create a component that requires the Foundation Menus component, you can call this method
directly. Otherwise, it is best just to call Fnd_Gen_MenuBar, which will call this method if it is available.

Fnd_Menu_MenuBarName

Fnd_Menu_MenuBarName ({menu name}) = Text

Parameter Type Description
menu name Text Menu bar name (optional)
Function result Text Menu bar name fo use next

Fnd_Menu_MenuBarName allows the developer to specify the menu bar to display the next time the
menu bar is displayed by a Foundation component. If a blank name is specified, the default Foundation
menu bar name (“Fnd_Menu”) is restored. If no parameter is passed, nothing is changed.

This routine also returns the name of the menu bar name that will be used the next time the
Fnd _Menu_MenuBar command is called.

In the original Foundation 4.0 release, this method was named Fnd_Menu_SetMenuBarName.

Foundation Developer Reference 157 Menus Component

Fnd_Menu_Window_Add

Fnd_Menu_Window_Add ({item text})

Parameter Type Description
item text Text Item text to add o the menu (optional)

Adds the specified title to the Window menu. If no title is specified, the window title of the current
process is used. If the current process is already represented in the Window menu, the menu item text is
updated.

Fnd_Wnd_Title ("Invoice Designer") * Fnd_Menu_Window_Add will use this.
Fnd_Wnd_OpenFormWindow (->[Invoices];"InvoiceDesignerForm")
Fnd_Menu_Window_Add

DIALOG([Invoices];"InvoiceDesignerForm")

Fnd_Menu_Window_Remove

CLOSE WINDOW

Call Fnd_Menu_Window_Remove just before closing the window to remove the item from the
Window menu.

Fnd_Menu_Window__Remove

Fnd_Menu_Window_Remove ({process number})

Parameter Type Description
process number Longint Process number to remove

The Fnd_Menu_Window_Remove routine removes the specified process from the Window menu. If
the process number is not specified, the current process is removed from the menu bar.

It is important to call this method before calling 4D’s CLOSE WINDOW command. Otherwise the
window’s name may not get removed from the Window menu.

See the Fnd_Menu_Window_Add command for an example.

Foundation Developer Reference 158 Menus Component

Message Component
Fnd_Msg

’:[;16 Message component provides messaging between processes. You can call
these commands from anywhere in your database.

Language Reference

Here are the routines in Foundation’s Message component:

Fnd_Msg_Broadcast Fnd_Msg_PackParameters
Fnd_Msg_Get Fnd_Msg_QuitBackgroundProcess
Fnd_Msg_GetParameter Fnd_Msg_Send

Fnd_Msg_Info

Foundation Developer Reference 159

Message Component

Fnd_Msg_Broadcast

Fnd_Msg_Broadcast (process name; message)

Parameter Type Description
process name Text Process name to send message
message Text Message to send to process

The Fnd_Msg_Broadcast routine sends the message out to all processes with the specified name. The
process name can contain wildcard characters. Does not broadcast to 4D created processes.

Fnd_Msg_Broadcast (processname; "Hello, World")

Fnd_Msg_Get

Fnd_Msg_Get ({->hlob}) =» Text

Parameter Type Description
blob Pointer Pointer to blob (optional)
Function result Text The message

This function returns the next message queued up for the current process.

$processmessage_t:=Fnd_Msg_Get (->messsage_blob)

Fnd_Msg_GetParameter

Fnd_Msg_GetParameter (parameters string; num) => Text

Parameter Type Description

parameters string Text String of parameters
num Longint Parameter number fo get
Function result Text Parameter value

This function returns the parameter in position "num" out of the message. See
Fnd_Msg_PackParameters to find out more about how to pack the parameters into your message.

Foundation Developer Reference 160 Message Component

$State_t:=Fnd_Msg_GetParameter ("CityState";2)

Fnd_Msg_Info

Fnd_Msg_Info (info requested) =» Text

Parameter Type Description
info requested Text Info desired
Function Result Text Response

Returns the requested information about the component.

$language_t:=Fnd_Msg_Info (“language”)

The Fnd_Msg_Info method will respond to these requests:

Request Response Example

name The component’s full name Foundation Message
version The component's version number 4.0.3 beta 1
language The currently selected language code EN

This routine can also be called using the Fnd_Gen_Componentinfo method without first testing to see
if the component is installed:

$language_t:=Fnd_Gen_ComponentInfo ("Fnd_Msg";"language")

I

See the Fnd_Gen_Componentinfo method for more information.

Fnd_Msg_PackParameters

Fnd_Msg_PackParameters (msg; param 1 {... param N}) => Text

Parameter Type Description

msg Text Message to append parameter
param 1-n Text Parameters to add to the message
Function result Text Delimited parameters

This function returns the delimited parameters. This function adds the text parameters to the message
using the same delimiter expected by the Fnd_Msg_GetParameter routine.

$delimitedparams_t:=Fnd_Msg_PackParameters ("Location_msg";"City";"State")

Fnd_Msg_QuitBackgroundProcess

Fnd_Msg_QuitBackgroundProcess

Foundation Developer Reference 161 Message Component

This method ends the message loop background process. If there are messages still waiting to be
delivered, this process waits until a timeout period is reached so hopefully the messages will be delivered.

Fnd_Msg_QuitBackgroundProcess

Fnd_Msg_Send

Fnd_Msg_Send (target process; message; {->blob})

Parameter Type Description

target process Longint Process number to send the message
message Text Message fo send

blob Pointer Pointer fo a blob (opfional)

This method sends a message to another process.

Fnd_Msg_Send (Process number(<¢YourProcessName);"Hello, World")

Foundation Developer Reference 162 Message Component

Navigation Component
Fnd_Nav

’:[;16 Foundation Navigation component allows you to display a floating palette

of buttons that the user can use to perform actions. By default, the Navigation

Palette will display buttons for each visible table in the structure file. Clicking one of the buttons will call
Foundation’s Fnd_IO_DisplayTable method to display the selected table’s output form.

You can optionally change the buttons that are displayed in the palette, and add additional buttons to
perform other functions. Once you call Fnd_Nav_AddButtonMethod or Fnd_Nav_AddButtonTable
to add a button to the table, it will be added as the first button. The default buttons will no longer be
displayed. Each additional call to Fnd_Nav_AddButtonMethod or Fnd_Nav_AddButtonTable will
add another button to the palette.

When the palette window is closed, the settings are reset. You must once again add the buttons
the next time the palette is displayed. In the Foundation Shell, this should be done in the
Fnd_Hook_Shell_NavigationPalette hook.

You can also reset the palette by deleting all of the buttons with the Fnd_Nav_Delete method. This
routine allows you to rebuild the palette on-the-fly. The palette window will resize if necessary. This
command can also be used to procedurally close the palette window.

Foundation Developer Reference 163 Navigation Component

The Navigation Palette is limited to 40 buttons. Attempting to add more than 40 buttons will have no
effect.

This component requires the Foundation General (Fnd_Gen) component. This routine will use the
Foundation Preferences, Virtual Structure, and I0 components if they are available.

Language Reference

Here are the routines in Foundation’s Navigation component:

Fnd_Nav_AddButtonMethod Fnd_Nav_Display
Fnd_Nav_AddButtonTable Fnd_Nav_Info
Fnd_Nav Delete

Fnd_Nav_AddButtonMethod

Fnd_Nav_AddButtonMethod (method; label{; foreground color; background color}})

Parameter Type Description

method Text Method name to execute
label Text Button label

foreground color Longint Text color (optional)
background color Longint Background color (optional)

This routine adds a new button to the palette and assigns the method as its action. When the button is
clicked, the first parameter, method, will be executed.

Fnd_Nav_AddButtonMethod ("MyCoolMethod"; "Run Cool Method")

You can include parameters or any other executable code as the first parameter. For example, the
following example will pass a text and a numeric parameter to MyCoolMethod:

Fnd_Nav_AddButtonMethod ("MyCoolMethod(\"one\";2)"; "Run Cool Method")

If a button with an identical label already exists, it is updated with the new method name.

Buttons are always added to the palette after existing palette buttons. To add a button in any other
position, just use the Fnd_Nav_Delete to delete all of the existing palette buttons, then recreate the
palette using Fnd_Nav_AddButtonMethod and Fnd_Nav_AddButtonTable.

Fnd_Nav_Delete * Remove all of the buttons.

Fnd_Nav_AddButtonMethod ("MyCoolMethod";"Run Cool Method")

Fnd_Nav_AddButtonTable (->[Invoices])
Fnd_Nav_AddButtonTable (->[People];"Customers")

You can optionally specify the text color and background color to use for the new button. See 4D’s
SET RGB COLORS command documentation for more information about specifying colors. Pass the

Foundation Developer Reference 164 Navigation Component

4D constant Default foreground color and Default background color to restore the palette’s default
colors.

* Add a button with a light green background color.
Fnd_Nav_AddButtonMethod ("MyMethod";"Run My Method";Default foreground
color ;0xE2FFDF)

Fnd_Nav_AddButtonTable

Fnd_Nav_AddButtonTable (->table{; label{; foreground color; background color}})

Parameter Type Description

table Pointer Table

label Text Button label (optional)
foreground color Longint Text color (optional)
background color Longint Background color (optional)

This method adds a new button to the palette and assigns the specified table to it.

Fnd_Nav_AddButtonTable (->[Invoices])
Fnd_Nav_AddButtonTable (->[People];"Customers")

This routine calls Foundation’s I0 component to display the table. If the IO component is not available,
an error will occur when the button is clicked.

If the Foundation Virtual Structure component is available, it will be used to determine the table name if
no label is specified. Otherwise the actual table name will be used.

Buttons are always added to the palette after existing palette buttons. To add a button in any other
position, just use the Fnd_Nav_Delete to delete all of the existing palette buttons, then recreate
the palette using Fnd_Nav_AddButtonMethod and Fnd_Nav_AddButtonTable. See the
Fnd_Nav_AddButtonMethod routine for an example.

You can optionally specify the text color and background color to use for the new button. See 4D’s

SET RGB COLORS command documentation for more information about specifying colors. Pass the
4D constant Default foreground color and Default background color to restore the palette’s default
colors.

* Add a button with blue text and a light blue background color.
Fnd_Nav_AddButtonTable (->[Invoices];"";0x00FF;0x00C6D4FC)

Fnd_Nav_Delete

Fnd_Nav_Delete ({label})

Parameter Type Description
label Text Button label to delete (optional)

Foundation Developer Reference 165 Navigation Component

Fnd_Nav_Delete deletes the button with the specified label from the navigation palette. If no parameter
is passed, all buttons are deleted.

If all of the buttons are deleted from the palette, and no new buttons are immediately added, the palette
window will close.

Fnd_Nav_Display
Fnd_Nav_Display

Parameter Type Description
No parameters required.

Fnd_Nav_Display displays the navigation palette window. If Fnd_Nav_AddButtonMethod or
Fnd_Nav_AddButtonTable have not been previously called, the palette will contain a button for each
visible table in the database. However, these buttons will work only if the Foundation IO component is
available.

Fnd_Nav_AddButtonMethod ("MyCoolMethod";"Run Cool Method")

Fnd_Nav_AddButtonTable (->[Invoices])
Fnd_Nav_AddButtonTable (->[People];"Customers";Default foreground color ;0x00E2FFDF)

Fnd_Nav_Display

Fnd_Nav_Info

Fnd_Nav_Info (info requested) =» Text

Parameter Type Description
info requested Text Info desired
Function Result Text Response

Returns the requested information about the component.

$language_t:=Fnd_Nav_Info (“language”)

The Fnd_Nav_Info method will respond to these requests:

Request Response Example

name The component’s full name Foundation Navigation
version The component's version number 4.0.3 beta 1

language The currently selected language code EN

This routine can also be called using the Fnd_Gen_Componentinfo method without first testing to see
if the component is installed:

Foundation Developer Reference 166 Navigation Component

$language_t:=Fnd_Gen_ComponentInfo ("Fnd_Nav";"language")

See the Fnd_Gen_Componentinfo method for more information.

Foundation Developer Reference 167 Navigation Component

PfEferen(es Componeni
Fnd_Pref

’:[Le Foundation Preferences component provides a very easy way to
manage user preferences. With this component, you can easily store
strings, numbers, Boolean values, and even window coordinates.

Using this component, a preference value can be stored either locally in a preferences file on the user’s
computer, or in the 4D database in the [Fnd_Pref] table. Any combination of local and server preferences
can be used. Additionally, this component lets you create any number of shared server preferences that
can be used by all database users.

Preference Scope

The 4.2 update adds the ability to define any preference value as either a local, server, or shared
preference. The methods for getting and setting each of these preference types is identical, but differs in
the new “scope” parameter that can be passed to the methods when setting a preference value.

Foundation Developer Reference 168 Preferences Component

P73

Preferences are set using one of this component’s “set” routines. Just pass a preference name and value:

Fnd_Pref_SetText ("My Favorite Color";"green")

This stores the preference in the user’s external preference file. This call can be modified to instead
save the preference as a record in the database by adding the Fnd _Pref Server constant as a third
parameter:

Fnd_Pref_SetText ("My Favorite Color";"green";FEnd_Pref Server)

The scope parameter is not used when getting a preference value. So the function to get the user’s
favorite color is the same regardless of where it is stored:

$color_t:=Fnd_Pref_GetText ("My Favorite Color")

However, since you can pass a default value to use when getting a preference, you can also now pass the
scope for the default value. If the preference does not already exist, it will be created using the default
value and scope.

$color_t:=Fnd_Pref_GetText ("My Favorite Color";"White";Fnd_Pref Server)

Although it would be possible to store a preference with the same name both locally and in the data
file, this should be avoided, since there is no way to control which preference (local or server) would be
returned when getting the value.

Local Preferences

Local preferences are stored in an external file on the user’s hard drive. The file is stored in the user’s
preferences folder in an XML format. Local preference values cannot be seen or manipulated by any
other user in a multiuser system.

Local preferences are ideal for machine specific settings, such as window positions and default directory
paths.

This is the default preferences setting type if no scope parameter is provided when calling the “set”
preference routines. Earlier versions of the Preferences component offered this type of preference
setting.

The preferences are stored in an XML file in the user’s directory:

0S Directory

Mac 05 9: Hard Disk:System Folder:Preferences:DatabaseName Prefs

Mac 05 X: ~ /Library/Preferences/DatabaseName.plist

Windows: (:\Documents and Settings\User Name\Application Data\4D\DatabaseName.xml

The “DatabaseName” in the paths shown above is based on the structure file name, not on the name you
assign the database in Foundation’s Fnd_Hook_Shell_Setup method.

Foundation Developer Reference 169 Preferences Component

The file is stored as a Mac OS X preference file, regardless of the platform in use. A simple Foundation
preference file might look something like this:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN" "http://www.apple.com/
DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
<key>Fnd_Nav: Open at Startup</key>
<true/>
<key>Fnd_Nav: Navigation Palette Window Position</key>
<dict>
<key>left</key>
<integer>1356</integer>
<key>top</key>
<integer>34</integer>
<key>right</key>
<integer>1440</integer>
<key>bottom</key>
<integer>53</integer>
</dict>
</dict>
</plist>

Server Preferences

Like local preferences, server preferences are unique to the current user, but the value is stored in the

4D data file. This allows a user to use the same preference values when working at different workstations.
Server preferences for any user can be procedurally controlled from another workstation in a client/server
environment.

By default, server preferences are stored using the current user’s name from the 4D password system.
The Fnd_Pref_UserName method can be used to change the current user name for administration
purposes or if you are not using 4D’s password system.

Server preferences are ideal for setting user or data specific settings, such as the user’s e-mail address or
e-mail message signature.
Shared Preferences

Shared preferences are also stored in the data file, but can be set and accessed by any user. The value
stored is identical for all users, and can also be used by triggers, web processes, and stored procedures on
the server.

To set a shared preference, use the Fnd _Pref Shared constant when setting the preference value:

Fnd_Pref_SetText ("SMTP Mail Server";"smtp.ourcompany.com";End_Pref Shared)

Foundation Developer Reference 170 Preferences Component

The Preferences Form

This component includes a form that is used to display the Preferences window.

Unlike most forms, this form is Public rather than Private, allowing you to modify it. By default, it has just a
single option: Display Navigation Palette at Startup.

You can add additional objects to this form and wire it into the Preferences component using the
commands below. Each preference setting requires a name and a value. The name can be just about
anything you want, as long as each name is unique.

Installation

The Prefs component stores information in a database table. 4D v11 components do not allow tables to be
included in a component.

Therefore, the Foundation components do not include any 4D tables. Instead, you will need to add any
required tables to your structure before installing the component. Internally the components create
pointers to the structure’s tables and fields and then uses these throughout the code.

Create the [Fnd_Pref] Table

To use the Foundation Preferences component, you will first need to add a table to your structure.

You can simply copy the [Fnd_Pref] table from the Product Sales.4DB sample file, or you can create it
manually in 4D (this is a good opportunity to reuse an unused or deleted table). The table must be named
“Fnd_Pref” and must contain the fields listed below. The order of the fields is not important, and it is okay
if the table contains other unused fields (in case you are reusing a table). However, the field names and
types must be set up exactly as shown below.

Field Name Type Attributes
[Fnd_Pref]ID Long Infeger

[Fnd_Pref]Owner Alpha 80 Indexed
[Fnd_Pref]Name Alpha 80 Indexed
[Fnd_Pref]Type Integer

[Fnd_Pref]Value Text

Foundation Developer Reference 171 Preferences Component

Install the Component

The Foundation Preferences component requires the following components (shown with minimum
required version numbers). It also requires version 4.2 or later of the Foundation Extras plugin.

Component Minimum Version
Fnd_Gen 42
Updating the Component

If you later upgrade (or reinstall) the component, you will be asked if you want to update the public
Fnd_Pref Preferences form. Click Yes if you have not customized this form for your application, or if you
wish to revert to the default layout. Otherwise click No to preserve any changes you may have made.

Language Reference

Here are the routines in Foundation’s Preferences component:

Fnd_Pref_Display Fnd_Pref_SetBoolean
Fnd_Pref_GetBoolean Fnd_Pref_Setlonglnt
Fnd_Pref_GetLonglnt Fnd_Pref_SetReal
Fnd_Pref_GetReal Fnd_Pref_SefText
Fnd_Pref_GeiText Fnd_Pref_SetWindow
Fnd_Pref_GetWindow Fnd_Pref_UserName

Fnd_Pref_Info

Fnd_Pref_Display
Fnd_Pref_Display

Parameter Type Description

No parameters required.

This method displays the Preferences window in a new process.

You can add additional options to this window by modifying the component’s Fnd_Pref Preferences
public form. Just add similar code to the existing code that gets and sets the Navigation Palette option.

Foundation Developer Reference 172 Preferences Component

Fnd_Pref GetBoolean

Fnd_Pref_GetBoolean (namef; default {; scope}}) = Boolean

Parameter Type Description

name Text Name of the preference item

default Boolean Default value (optional)

scope Longint The scope if the default is used (optional)
Function result Boolean The saved value

Returns the Boolean value of the preference with the specified name:
$displayToolbar_b:=Fnd_Pref_GetBoolean ("Toolbar")

If an item with the specified name is not found, False is returned. To specify a different default value,
pass it as the second parameter:

$displayToolbar_b:=Fnd_Pref_GetBoolean ("Toolbar";True)

If the preference value already exists, the second parameter will be ignored. If it does not exist, it will be
created and set to the value of the second parameter.

If no scope parameter is specified, the value will be saved as a local preference. A third parameter can be
used to specify the preference’s scope:

$displayToolbar_b:=Fnd_Pref_GetBoolean ("Toolbar";True;Fnd Pref Server)

The scope value will be used only if the parameter does not already exist.

Foundation Developer Reference 173 Preferences Component

Fnd_Pref_GetLonglnt

Fnd_Pref_GetLongInt (name{; default {; scope}}) = Longint

Parameter Type Description

name Text Nume of the preference item

default Longint Default value (optional)

scope Longint The scope if the default is used (optional)
Function result Longint The saved value

Returns the long integer value of the preference with the specified name:

$timeout_i:=Fnd_Pref_GetLongint ("TimeoutInSeconds")

If an item with the specified name is not found, 0 is returned. To specify a different default value, pass it as
the second parameter:

$timeout_i:=Fnd_Pref_GetLongint ("TimeoutInSeconds";30)

If the preference value already exists, the second parameter will be ignored. If it does not exist, it will be
created and set to the value of the second parameter.

If no scope parameter is specified, the value will be saved as a local preference. A third parameter can be
used to specify the preference’s scope:

$timeout_i:=Fnd_Pref_GetLongint ("TimeoutIlnSeconds";30;End_Pref Server)

The scope value will be used only if the parameter does not already exist.

Fnd_Pref GetReal

Fnd_Pref_GetReal (name{; default {; scope}}) = Longint

Parameter Type Description

name Text Nume of the preference item

default Real Default value (optional)

scope Longint The scope if the default is used (optional)
Function result Real The saved value

Returns the real number value of the preference with the specified name:
$rate_r:=Fnd_Pref_GetReal ("ExchangeRate")

If an item with the specified name is not found, 0 is returned. To specify a different default value, pass it as
the second parameter:

$rate_r:=Fnd_Pref_GetReal ("ExchangeRate";1.35)

If the preference value already exists, the second parameter will be ignored. If it does not exist, it will be
created and set to the value of the second parameter.

Foundation Developer Reference 174 Preferences Component

If no scope parameter is specified, the value will be saved as a local preference. A third parameter can be

used to specify the preference’s scope:
$rate_r:=Fnd_Pref_GetReal ("ExchangeRate";1.35;Fnd_Pref Shared)

The scope value will be used only if the parameter does not already exist.

Fnd_Pref GetText

Fnd_Pref_GefText (namef{; default {; scope}}) = Longint

Parameter

name

default

scope

Function result

Returns the text value of the preference with the specified name:

Type
Text
Text

Longint

Text

Description

Nume of the preference item
Default value (optional)

The scope if the default is used (optional)

The saved value

$email_t:=Fnd_Pref_GetText ("EmailAddress")

If an item with the specified name is not found, 0 is returned. To specify a different default value, pass it as

the second parameter:

$email_t:=Fnd_Pref_GetText ("EmailAddress";"you@OurCompany.com")

If the preference value already exists, the second parameter will be ignored. If it does not exist, it will be
created and set to the value of the second parameter.

If no scope parameter is specified, the value will be saved as a local preference. A third parameter can be

used to specify the preference’s scope:

$email_t:=Fnd_Pref_GetText ("EmailAddress";"you@OurCompany.com";FEnd_Pref Server)

The scope value will be used only if the parameter does not already exist.

Fnd_Pref GetWindow

Fnd_Pref_GetWindow (name; ->left; ->top; ->right; ->bottom)

Parameter

name
[eft
top
right
bottom

Type
Text
Pointer
Pointer
Pointer
Pointer

Description

Nume of the preference item
Left coordinate

Top coordinate

Right coordinate

Bottom coordinate

Foundation Developer Reference

175

Preferences Component

Use this method to retrieve the coordinates (left, top, right, and bottom) of a window position that has
been stored with Foundation’s Fnd_Pref_SetWindow method. Pass pointers to four variables, and this
routine will modify the values of the variables.

If the window position has not been previously saved, the variables will be left untouched, so you can set
them to default values before calling this method. For example:

vLeft:=10 ° Set the default position first.

vTop:=40

vRight:=510

vBottom: =340

Fnd_Pref_GetWindow ("My Window";->vLeft;->vTop;->VvRight;->vBottom)
$winRef: =0Open window(vLeft;vTop;VvRight;vBottom;Movable dialog box)
Fnd_Pref_SetWindow ("My Window";->vLeft;->vTop;->VRight;->vBottom)

Window coordinates are always stored locally. There is no option to store this information as a server or
shared preference.

Fnd_Pref Info

Fnd_Pref_Info (info requested) = Text

Parameter Type Description
info requested Text Info desired
Function Result Text Response

Returns the requested information about the component.

$version_t:=Fnd_Pref_Info ("version")

The Fnd_Pref_Info method will respond to these requests:

Request Response Example
name The component's full name Foundation Preferences
version The component's version number 42

This routine can also be called using the Fnd_Gen_Componentinfo method without first testing to see
if the component is installed:

$version_t:=Fnd_Gen_ComponentInfo ("Fnd_Pref";"version")

See the Fnd_Gen_Componentinfo method for more information.

Foundation Developer Reference 176 Preferences Component

Fnd_Pref SetBoolean

Fnd_Pref_SetBoolean (name; value {; scope})

Parameter Type Description

name Text Nume of the preference item
value Boolean The new preference value

scope Longint The preference’s scope (opfional)

This routine stores a Boolean value.
Fnd_Pref_SetBoolean ("Toolbar";$displayToolbar_b)

If no scope is specified, the preference is stored as a local preference. Pass a third parameter to specify the
scope of the preference:

Fnd_Pref_SetBoolean ("Toolbar";$displayToolbar_b;Fnd Pref Shared)

A preference’s scope should not be changed. Doing so may cause unpredictable results.

Fnd_Pref_SetLonglnt

Fnd_Pref_SetLongInt (name; value {; scope})

Parameter Type Description

name Text Nume of the preference item
value Longint The new preference value

scope Longint The preference’s scope (opfional)

This routine stores a long integer value.

Fnd_Pref_SetlLongInt ("TimeoutInSeconds";$timeout_i)

If no scope is specified, the preference is stored as a local preference. Pass a third parameter to specify the
scope of the preference:

Fnd_Pref_SetlLongInt ("TimeoutIlnSeconds";$timeout_i;Fnd Pref Server)

A preference’s scope should not be changed. Doing so may cause unpredictable results.

Foundation Developer Reference 177 Preferences Component

Fnd_Pref SetReal

Fnd_Pref_SetReal (name; value {; scope})

Parameter Type Description

name Text Nume of the preference item
value Real The new preference value

scope Longint The preference’s scope (opfional)

This routine stores a real number value.
Fnd_Pref_SetReal ("ExchangeRate";$rate_r)

If no scope is specified, the preference is stored as a local preference. Pass a third parameter to specify the
scope of the preference:

Fnd_Pref_SetReal ("ExchangeRate";$rate_r;Fnd Pref Shared)

A preference’s scope should not be changed. Doing so may cause unpredictable results.

Fnd_Pref SetText

Fnd_Pref_SefText (name; value {; scope})

Parameter Type Description

name Text Nume of the preference item
value Text The new preference value

scope Longint The preference’s scope (opfional)

This routine stores a real number value.
Fnd_Pref_SetText ("EmailAddress";$email_t)

If no scope is specified, the preference is stored as a local preference. Pass a third parameter to specify the
scope of the preference:

Fnd_Pref_SetText ("EmailAddress";$email_t;Fnd Pref Server)

A preference’s scope should not be changed. Doing so may cause unpredictable results.

Foundation Developer Reference 178 Preferences Component

Fnd_Pref UserName

Fnd_Pref_UserName (name; value {; scope})

Parameter Type Description

name Text Nume of the preference item
value Text The new preference value

scope Longint The preference’s scope (opfional)

This routine gets and sets the current user name used by the Preferences component. When setting a
server preference, the preference is stored with the current user’s name. By default the value returned
by 4D’s Current user function is used. But if you do not use 4D’s password system then everybody’s
name becomes “Designer,” and everyone shares the same preferences (use this component’s shared
preferences feature if you want to do this). So to specify a unique name for each user, you can pass the
user’s name (or any other unique text identifier) to this function:

Fnd_Pref_UserName (String([User]ID))

This method can also be called as a function to get the current user name setting:

$userName_t:=Fnd_Pref_UserName

Fnd_Pref SetWindow

Fnd_Pref_SetWindow ({{name}; window ref})

Parameter Type Description
name Pointer Nume of the preference item (optional)
window ref Longint Window fo save (optional)

Fnd_Pref_SetWindow (name; left; top; right; bottom)

Parameter Type Description

name Text Nume of the preference item
left Longint Left coordinate

top Longint Top coordinate

right Longint Right coordinate

bottom Longint Bottom coordinate

This routine saves the coordinates of the current window in the user’s preferences file. The values can be
set either by using the window reference or the left, top, right, and bottom coordinates.

To save the values using the window reference, pass a preference name and the window reference
number that has been returned by one of 4D’s window opening commands. If no name is specified, the
current process name is used. If no window is specified, the frontmost window of the current process is
used.

See the example in Fnd_Pref_GetWindow.

Foundation Developer Reference 179 Preferences Component

To save the values using the left, top, right, and bottom coordinates, pass a preference name and the
coordinates. There are no optional parameters when using the window coordinates.

$left_i:=20
$top_i:=50
$right_i:=320

$bottom_i:=250
Fnd_Pref_SetWindow ("MonitorWindow"; $left_i;$top_i;$right_i;$bottom_i)

Window coordinates are always stored locally. They cannot be stored as server or shared preferences.

Foundation Developer Reference 180 Preferences Component

Password Component
Fnd_ Pswd

’:[;16 Password component provides utility routines for generating passwords.
You can call these commands from anywhere in your database.

Language Reference

Here are the routines in Foundation’s Password component:

Fnd_Pswd_BulletEntry
Fnd_Pswd_ CustomCharacters
Fnd_Pswd_ExcludeCharacters
Fnd_Pswd_GeneratePassword
Fnd_Pswd_GeneratorDialog
Fnd_Pswd_Info

Fnd_Pswd_MaxLength
Fnd_Pswd_MinLength
Fnd_Pswd_UseLowercase
Fnd_Pswd_UseNumbers
Fnd_Pswd_UseSymbols
Fnd_Pswd_UseUppercase

Foundation Developer Reference 181

Password Component

Fnd_Pswd_BulletEntry

Fnd_Pswd_BulletEntry (->visible object; ->text variable)

Parameter Type Description
visible object Pointer Pointer to the displayed variable
text variable Pointer Entered value

The Fnd_Pswd_BulletEntry routine replaces typed characters with bullet characters for password
entry. Requires the field's On Before Keystroke event to be enabled.

Fnd_Pswd_BulletEntry(->[Contact]Password;->password_t)

Fnd_Pswd_ CustomCharacters

Fnd_Pswd_CustomCharacters ({characters}) =» Text

Parameter Type Description
characers Text Custom characters to use fo generate passwords (opfional)
Function result Text Currently specified custom characters

This function returns the currently specified custom characters to use to generate passwords. Optionally,
you may pass any custom characters that should be used to generate passwords.

$passwordcharacters_t:=Fnd_Pswd_CustomCharacters ("abcxyz123890")

Fnd_Pswd_ExcludeCharacters

Fnd_Pswd_ExcludeCharacters ({characters}) => Text

Parameter Type Description
characers Text Custom characters to exclude from passwords (optional)
Function result Text Currently excluded characters

This function returns the currently excluded custom characters cannot be used to generate passwords.
Optionally, you may pass any custom characters that should be excluded from generated passwords.

Foundation Developer Reference 182 Password Component

$excludedcharacters_t:=Fnd_Pswd_ExcludeCharacters ("1234567890")

Fnd_Pswd_ GeneratePassword

Fnd_Pswd_GeneratePassword =» Text

Parameter Type Description

Function result Text Generated password

This function returns a password.

$password_t:=Fnd_Pswd_GeneratePassword

Fnd_Pswd_GeneratorDialog

Fnd_Pswd_GeneratorDialog =» Text

Parameter Type Description

Function result Text Password

This function displays a password generator dialog and returns the password.

$password_t:=Fnd_Pswd_GeneratorDialog

Fnd_Pswd_Info

Fnd_Pswd_Info (info requested) = Text

Parameter Type Description
info requested Text Info desired
Function Result Text Response

Returns the requested information about the component.

$version_t:=Fnd_Pswd_Info ("version")

The Fnd_Pswd_Info method will respond to these requests:

Request Response Example
name The component’s full name Foundation Password
version The component's version number 42

This routine can also be called using the Fnd_Gen_Componentinfo method without first testing to see
if the component is installed:

Foundation Developer Reference 183 Password Component

$version_t:=Fnd_Gen_ComponentInfo ("Fnd_Pswd";"version")

See the Fnd_Gen_Componentinfo method for more information.

Fnd_Pswd_MaxLength

Fnd_Pswd_MaxLength ({max chars to use{; max limitation}}) =» Longint

Parameter Type Description

max chars to use Longint Maximum password length setting (optional)

max limitation Longint Maximum value displayed in the pop-up menu (optional)
Function result Longint Currently set maximum password length

This function returns the current value of the maximum password length. Optionally, allows the
developer to set the maximum password length, and, optionally, the maximum password length defined
in the Generator dialog.

$maxpasswordlength_i:=Fnd_Pswd_MaxLength (12;8)

Fnd_Pswd_MinLength

Fnd_Pswd_MinLength ({min chars to use{; min limitation}}) =» Longint

Parameter Type Description

min chars fo use Longint Minimum password length setting (optional)

min limitation Longint Minimum value displayed in the pop-up menu (optional)
Function result Longint Currently set minimum password length

This function returns the current value of the minimum password length. Optionally, allows the developer
to set the minimum password length, and, optionally, the minimum password length defined in the
Generator dialog.

$minpasswordlength_i:=Fnd_Pswd_MinLength (6;6)

Fnd_Pswd_ UseLowercase

Fnd_Pswd_UseLowercase ({use lowercase?}) =» Boolean

Parameter Type Description
use lowercase Boolean True to use lowercase in passwords
Function result Boolean Current setfing of whether o use lowercase

This function returns current setting of whether to use lowercase in passwords. Optionally, pass True to
tell the password generator to use lowercase letters in passwords.

Foundation Developer Reference 184 Password Component

$uselowercase_b:=Fnd_Pswd_UselLowercase (True)

Fnd_Pswd_UseNumbers

Fnd_Pswd_UseNumbers ({use numbers?}) =» Boolean

Parameter Type Description
use lowercase Boolean True o use numbers in passwords
Function result Boolean Current setfing of whether fo use numbers

This function returns current setting of whether to use numbers in passwords. Optionally, pass True to
tell the password generator to use numbers in passwords.

$usenumbers_b:=Fnd_Pswd_UseNumbers (True)

Fnd_Pswd_UseSymbols

Fnd_Pswd_UseSymbols ({use symbols?}) = Boolean

Parameter Type Description
use symbols Boolean True to use symbols in passwords
Function result Boolean Current setfing of whether fo use symbols

This function returns current setting of whether to use symbols in passwords. Optionally, pass True to tell
the password generator to use symbols in passwords.

$usesymbols_b:=Fnd_Pswd_UseSymbols (True)

Fnd_Pswd_UseUppercase

Fnd_Pswd_UseUppercase ({use uppercase?}) =» Boolean

Parameter Type Description
use uppercase Boolean True fo use uppercase in passwords
Function result Boolean Current setfing of whether o use lowercase

This function returns current setting of whether to use uppercase in passwords. Optionally, pass True to
tell the password generator to use uppercase letters in passwords.

$useuppercase_b:=Fnd_Pswd_UseUppercase (True)

Foundation Developer Reference 185 Password Component

Records Component
Fnd_Rec

F oundation's Records component give you the tools to modify a selection of
records. These are commands that the shell calls to affect records displayed in an output form.

Language Reference

Here are the routines in Foundation’s Records component:

Fnd_Hook_Rec_Delete Fnd_Rec_Info
Fnd_Hook_Rec_New Fnd_Rec_OmitSubset
Fnd_Rec_DeleteUserSet Fnd_Rec_ShowAll
Fnd_Rec_Info Fnd_Rec_ShowSubset

Foundation Developer Reference 186 Records Component

Fnd_Hook_Rec_Delete

Fnd_Hook_Rec_Delete =» Boolean

Parameter Type Description

No parameters required.
Function result Boolean Allow Foundation to handle the request?

This hook gets called before Foundation attempts to delete any records. This hook returns True to allow
Foundation to display a warning and delete the records. Return False if you want to handle the process
yourself.

Call Fnd_Gen_CurrentTable to determine the table in use. The “UserSet” set contains the records the
user wants to delete.

Fnd_Hook_Rec_New

Fnd_Hook_Rec_New (->table) =» Boolean

Parameter Type Description
table Pointer Pointer fo the table for which to create a new record
Function result Boolean Allow Foundation to handle the request?

This hook gets called when the user wants to add a new record. It returns True to allow Foundation to
handle the request. Return False if you want to handle the request yourself.

The first parameter passed to this method is the table for which the new record will be created.

Fnd_Rec_DeleteUserSet

Fnd_Rec_DeleteUserSet

Parameter Type Description
No parameters required.

Fnd_Rec_DeleteUserSet deletes the highlighted records in the current selection (the “UserSet”). This
method asks the user first if they are sure the records should be deleted. It was designed to be called from
the Delete button on the toolbar or from a Delete menu item.

Foundation Developer Reference 187 Records Component

Fnd_Rec_Info

Fnd_Rec_Info (info requested) = Text

Parameter Type Description
info requested Text Info desired
Function Result Text Response

Returns the requested information about the component.

$version_t:=Fnd_Rec_Info ("version")

The Fnd_Rec_Info method will respond to these requests:

Request Response Example
name The component’s full name Foundation Records
version The component's version number 4.0.2 beta 8

This routine can also be called using the Fnd_Gen_Componentinfo method without first testing to see
if the component is installed:

$version_t:=Fnd_Gen_ComponentInfo ("Fnd_Rec";"version")

See the Fnd_Gen_Componentinfo method for more information.

Fnd_Rec_NewRecord

Fnd_Rec_Info ({->table})

Parameter Type Description
table Pointer Pointer to the table to use (optional)

This method creates a new record for the specified table (if any). Otherwise a new record is created for
the current table.

Fnd_Rec_Info (->[Contacts])

Fnd_Rec_OmitSubset

Fnd_Rec_OmitSubset

Parameter Type Description
No parameters required.

This method omits the highlighted records from the current selection. Assumes the frontmost window is
displaying a 4D output form.

Foundation Developer Reference 188 Records Component

Fnd_Rec_ShowAll

Fnd_Rec_ShowAll ({->table})

Parameter Type Description
table Pointer Pointer fo the table to use (optional)

This method updates the selection to include all records. If the Macintosh Option key or Windows Alt key
is down, the selection is reduced to no records. Assumes the frontmost window is displaying a 4D output
form.

Fnd_Rec_ShowSubset

Fnd_Rec_ShowSubset

Parameter Type Description
No parameters required.

This method reduces the current selection to just the highlighted records. Assumes the frontmost
window is displaying a 4D output form.

Foundation Developer Reference 189 Records Component

Registration Component
Fnd_Reg & Fnd_RegG

ﬁl?he Foundation Registration component is a 4th Dimension component designed to help you create
demonstration or limited versions of your product that can later be converted by the end user to a full
working version by entering a personalized user name and unlock code.

This component can easily be added to a database that has been created with the Foundation Shell,
or it can be added to any database by combining it with a few other Foundation components (see the
Installation section for details).

There are actually two separate components you will be using. One is the Fnd_Reg component, which
you will add to the database you will be distributing. The other is the Fnd_RegG component (Registration
Generator), which you will add to your private customer database. This component will generate the
activation codes used by the Fnd_Reg component to unlock the public database.

Foundation Developer Reference 190 Registration Component

When an end-user launches your application, they will see a message at startup that indicates that the
program is in demo mode, and will have limited functionality until an unlock code is entered.

When the user purchases a license to the product, they can click the Register button to enter in their
personalized user name and unlock code. This will enable some or all of the features of your program.
Only the unlock code that matches the user name will unlock the program.

The unlock code is a short string consisting of some hexadecimal numbers and dashes. It can optionally
contain additional license information as shown in the screen shot. The unlock code can be generated by
the Fnd_RegG component installed in your customer database. The number is generated using a public
algorithm and a private keyword, so it can be also be created by almost any other program using any
computer language. For example, you could generate a personalized unlock code using PHP from your
web site.

This system can provide registration for an entire application or a specific feature of an application.

A product’s demo can be limited by time (it stops working after X number of days) or by feature
(functionality is limited until the product is registered). Any combination of these two can be used. You
can use the routines in this component to create almost any type of demo.

Foundation Developer Reference 191 Registration Component

For example, you could provide any combination of these demo behaviors:

* The application is fully functional for 15 days after the first launch. After 15 days the user can
still view and modify previously entered data, but cannot create new records.

* The application is fully functional, but limits the number of records that can be entered until
an activation code is entered.

* The application is partially functional with no time limitation. Entering an activation code
enables additional features.

* The application is partially functional for 60 days, then cannot be launched without an
activation code.

You can completely customize the look and content of the registration dialogs. The optional Buy Now
button opens a URL in the user’s default browser.

Multiple Features

In addition to registration for the overall product, the Foundation Registration system can also be used to
register any number of optional features in an application. For example, you can offer the ability to “add-
on” accounting features or enable integration with another program by entering additional unlock codes.

Most of the routines in this component accept a feature code as the first parameter. If you omit this
parameter or pass an empty string, the component will modify the “APPL” feature. This is the default
feature code of the application.

If you want to offer additional optional features, you will need to specify a unique feature code for

each one to differentiate it from the default application feature code. Any text value will work, such as
“invoicing” or “INV” or “My really cool invoice feature.” The feature code is never displayed to the end
user. However, a feature name is displayed in the registration dialogs. The feature name can be specified
using the Fnd_Reg_FeatureName method. This allows the feature name to be localized.

Additional License Information

The registration system is also able to track license limitations, such as the number of concurrent users in
a multi-user system. This is done by adding a your own custom string to the unlock code. For example,
instead of just entering an unlock code like “BA90-E129-C9F6,” the user would enter “57FA-506C-B516/5-
user” to indicate that the license is valid for 5 concurrent users.

The “5-user” string above is just an example. You can chose to add any custom string to any license you
generate, then retrieve this string at runtime to determine how your program will behave. The contents
of this string are included in the checksum that is used to generate the registration number, so the unlock
code will fail if the user attempts to change it. For example, if “57FA-506C-B516/5-user” would work, but
“57FA-506C-B516” or “57FA-506C-B516/7-user” would not work.

The registration information is stored in the data file. If a new data file is created, the demo period starts
over and the unlock code must be re-entered.

Foundation Developer Reference 192 Registration Component

Generating Unlock Codes

Unlock codes are generated right in your 4D-based customer tracking database using the Foundation
Registration Generator (Fnd_RegG) component. The simple unlock code generation algorithm can also
be easily incorporated into other languages such as PHP, ASP, AppleScript, C++, etc. This allows you to
offer automated online registration or use non-4D databases to generate the unlock codes. For details on
the algorithm for creating unlock codes, see the How it Works topic.

The Secret Key

Since the unlock code generated by the Foundation Registration component is based on an public
algorithm, what prevents other 4D developers (or anyone else with access to this documentation) from
generating an unlock code for your application? You provide one secret string value that will be known
only to the application you distribute and to the customer database that generates the activation codes.
This string will be hidden within the code of your application, so the end user will never be able to see it.

You can use almost any word or phrase as your secret key. It can be as short as “dog” or as long as “this is
my secret key and you cannot do anything about it.” As with any password, it is important to use a secret
key that cannot be guessed easily. Your secret key can include any punctuation or special characters,
although there are some cross-platform issues involved in using characters with high-ascii values.

Generally, you will want to use a different secret key for each product you distribute. If you do not, a user
would be able to purchase an unlock code for one product and then successfully use it to unlock your
other products.

Feature Codes

The Registration component has built-in support for different features within one application, so you do
not need a different secret key for the application and each feature. You will simply provide a feature code
for each special feature you wish to handle. The application itself is just a feature that has been pre-named
“Application.” When working with the application you can either pass this name as the feature code or a
blank string.

Examples of feature codes might include “Payroll,” “Printing,” or “Advanced Features.” It is not important
that these feature codes be difficult to guess. They are simply for you to identify different features, so it is
best to select easy to remember words or phrases.

The User Interface

When a user downloads and launches your application, the first thing they see will be the Demo Dialog.
Before the demo period starts (Fnd_Reg_StartDemoPeriod has never been called) no message
indicating the remaining number of days remaining is displayed.

Foundation Developer Reference 193 Registration Component

After the demo period starts (Fnd_Reg_StartDemoPeriod has been called) an additional line of text
displays the number of days remaining before the trial period ends. Now the Continue button in the
registration dialog is disabled for the first 7 seconds. A countdown is displayed to show the user how long
before the button will become enabled.

During the final week of the trial period, the message is displayed in red.

Installation

This section describes how to install the Fnd_Reg component into a database that you will distribute as a
demonstration version. You should install only the Fnd_Reg component into this database. Later you will
install the Fnd_RegG component into your customer database for creating personalized unlock codes.

The Registration component stores information in a database table. To work around this problem, the
Foundation Registration component uses a new technique for accessing the database structure. No
tables are included with the component. Instead, you will need to add the tables to your structure before
installing the component. Internally the component creates pointers to the structure’s tables and fields
and then uses these throughout the code.

Create the [Fnd_Reg] Table

To use the Foundation Registration component, you will first need to add a table to your structure.
The table must be named “Fnd_Reg” and must contain the fields listed below. The order of the fields is
not important, and it is okay if the table contains other unused fields (in case you are reusing a table).
However, the field names and types must be set up exactly as shown below.

Field Name Type Attributes
[Fnd_Reg]ID Long Integer Indexed
[Fnd_Reg]Feature_Code Alpha 80 Indexed
[Fnd_Reg]Demo_Days Integer
[Fnd_Reg]Demo_Start_Date Date

[Fnd_Reg]Unlock_Code Alpha 40

[Fnd_Reg]User_Name Alpha 80

[Fnd_Reg]License_Info Alpha 80

[Fnd_Reg] Checksum Alpha 40

Install the Component

The Foundation Registration component requires the following components (shown with minimum
required version numbers). It also requires version 4.2 or later of the Foundation Extras plugin.

Component Minimum Version
Fnd_Gen 4.2

Fnd_Text 412

Fnd_Wnd 414

Foundation Developer Reference 194 Registration Component

Updating the Component

If you later upgrade (or reinstall) the component, you will be asked if you want to update the two public
forms. Click Yes if you have not customized these forms for your application, or if you wish to revert to
the default layouts. Otherwise click No to save any changes you may have made.

Quick Start

After you have installed the Fnd Reg component to your database, think of a secret keyword or phrase
for your product. This is the password for creating registration numbers, so make sure it is not easy to
guess. See The Secret Key for details.

Add the code below to your database’s On Startup database method. Generally you will want to do this
before calling any other code (including other Foundation routines, including Fnd_Shell_Startup).
Fnd_Reg_SetSecretKey ("MySecretKey")

Fnd_Reg_BuyNowURL ("";"http://www.Mere-Mortal-Software-com/tracker/buynow.php")
Fnd_Reg_DemoDialog

Replace “MySecretKey” above with your own secret keyword or phrase that you have selected for this
application. You must call Fnd_Reg_SetSecretKey before calling any other Fnd_Reg routine. A
Foundation Bug Alert dialog will be displayed if this routine is not called before any other Fnd Reg
routine. For more information about the secret keyword, see the How it Works section.

Decide how many days you want your program to operate before features become disabled or the
application refuses to launch. By default this is 30 days. If you want to set a different trial period, add a call
to Fnd_Reg_DemoPeriod just before the call to Fnd_Reg_DemoDialog:

Fnd_Reg_SetDemoPeriod (15) * Set a 15 day trial period.

Foundation Developer Reference 195 Registration Component

Decide what action must be taken to start the demo period. The trial period can start when the
program is first launched, or by any other action, such as when the first record is saved. Add a call

to Fnd_Reg_StartDemoPeriod wherever you want to start the demo period. There is no need to
determine if this routine has already been called, since it will have an affect only the first time it is called.

Fnd_Reg_StartDemoPeriod

Keep in mind that the demo start period and unlock code are stored in the data file, so the trial period
will start over if a new data file is created.

Finally, install the Fnd_RegG component to your customer database. To generate an unlock code
for a customer, pass the customer name (it can be an individual’s name or a company name) to the
Fnd_RegG_GenerateUnlockCode method:

$unlock_t:=Fnd_Reg_GenerateUnlockCode ("MySecretKey";"";[Customer]ComanyName)
The second parameter (feature code) is optional, so just pass a blank string for now. To unlock the

application, the user will need to enter both the unlock code and the customer name that was passed to
this routine.

That is it. You are ready to distribute your database as a fully functional, time limited demo. See the next
section if you would like to offer different trial options.

Techniques

Feature Codes

All of the registration routines accept an optional “feature code” parameter. This allows you to set up
trial periods for additional program features. If you do not pass a feature code to a routine, internally

the component uses “APPL” as the feature code. All of the registration routines behave identically but
independently from other feature codes. For example, you could offer a demo of your advanced charting
features separately from the application. So a user could try the charting routines long after registering
and unlocking the application.

Throughout this documentation the word “feature” can refer to a specific optional feature or the default
“APPL” feature code.

Foundation Developer Reference 196 Registration Component

Determining the Current Registration State

The Fnd_Reg_RegistrationState routine will return the current state of the registration routines. You
can call it at any time to determine how your program should behave. It will return one of these constant
values:

Fnd_Reg_PreDemo

Fnd_Reg_Demo

Fnd_Reg_Expired
Fnd_Reg_Registered

Fnd Reg PreDemo: The feature has not been registered yet and the demo period has not been started
(there is no expiration date).

Fnd Reg Demo: The feature has not been registered and the demo period has been started
(there is an expiration date), but has not yet expired. Use the Fnd_Reg_GetExpirationDate or
Fnd_Reg_GetDemoDaysRemaining functions to determine when the trial period will expire.

Fnd Reg Expired: The feature has not been registered and the demo period’s expiration date has
passed. Call Fnd_Reg_GetExpirationDate to determine when the trial expired.

Fnd Reg Registered: The feature has been registered.

Selecting a Secret Product Key

The secret key is basically the password to your product registration, so it is important to treat it with the
same care you would treat any password. In addition to keeping it safe in your office, you should also do
your best to obscure it in your database structure file.

It is possible to view the contents of a 4D structure file with a text editor. If your password is a simple
string such as “MyPassword,” it is easy to spot. On the other hand, if your password is “xtX4pt z>?" then
it is much more difficult to find.

This applies to compiled databases too. In fact, the 4D compiler is so smart it can even hinder your efforts
to obscure the password. For example, it is easy to spot this line of code in your compiled structure with a
text editor:

Fnd_Reg_SetSecretKey ("MyPassword")

In the text editor, the string looks like this:

MyPassword

So, in an attempt to hide it, you instead enter it like this:
Fnd_Reg_SetSecretKey (IIMII+Ilyll+IIPII+Ilall+llsll+IISII+IIW|I+||0||+l|r|I+||dII)
The problem is that the 4D compiler is very smart. It is smart enough to know that it can combine these

strings at compile time rather than at runtime. So in your compiled code it also looks like this in the text
editor:

MyPassword

Foundation Developer Reference 197 Registration Component

Okay, so we need to get tricky to fake-out this smart compiler. Let us try this:

Fnd_Reg_SetSecretKey (Char(77)+Char(121)+Char(80)+Char(97)+Char(115)+
Char(115)+Char(119)+Char(111)+Char(114)+Char(100))

That is a little better, but we have only made a small change. It looks like this in the text editor:

*M*y*P*a*s*W*o*r*d

So, unless you want to get really fancy (which is certainly possible) it may be best to simply pick an
obscure secret key, such as “xtX4pt z>?.” Although it is still stored as a simple text string, it is much more
difficult to spot when the structure file is viewed with a text editor.

Custom Implementation Techniques

Instead of using the registration component to limit the number of days your unregistered product can be
used, you can instead use the component to enforce other types of limitations. Here are just some of the
optional registration techniques that you can implement using the Foundation Registration component.

Limit the Number of Records that can be Created

To limit the demo by the number of records rather than the number of days (similar to the

way the 4D demo works), do not start the demo period. Instead, just modify Foundation’s
Fnd_Hook_Rec_NewRecord hook so that it checks to see if the application is unlocked, and if not,
displays an error message when the user tries to add more records than the demo allows.

Limit the Demo Period to Minutes

Another way to offer a trial version is to limit the number of minutes the program can be used after it is
launched. If the user wants to continue using the database, they must quit and relaunch it. This is the way
the Foundation demo works.

To do this, you will need to get the current time when the application is launched, and then compare
this to the current time when performing some standard operations. It is best to use the Tickcounts
function, so that the program behaves as expected if launched around midnight.

Immediately after the demo dialog is displayed, determine when the demo should end:

Fnd_Reg_SetSecretKey ("MySecretKey")

$msg_t:="This database can be used for 15 minutes per launch until it is purchased."
Fnd_Reg_DemoMessage ("FancyGraphs";$msg_t)

Fnd_Reg_BuyNowURL ("";"http://www.Mere-Mortal-Software.com/tracker/buynow.php")
Fnd_Reg_DemoDialog

oDemoEndTickcount_i:=Tickcount+(15*3600) ° Quit after 15 minutes.

Then create a routine that determines if it is time to quit:

* Project Method: CheckDemoTimeout

If (Fnd_Reg_RegistrationState #Fnd_Reg Registered)
Fnd_Alert ("Your session has timed-out. Please relaunch the application to continue.")
Fnd_Gen_QuitNow (True) * Or insert your custom quit routine here.

End if

Foundation Developer Reference 198 Registration Component

Now just call this method liberally throughout your code. For example, you could call it from some of
Foundation’s hooks so the time-out is checked whenever the user searches or displays an input form.

(reating a Trial Feature that Never Expires

Instead of creating a demo that times-out after a specific number of days, you may want your application
(or a feature) to operate in demo mode indefinitely. This is ideal for upgraded features that you want your
existing customers to purchase.

To do this, just do not call the Fnd_Reg_StartDemoPeriod method. Then in your code, offer limited
functionality unless the Fnd_Reg_StartDemoPeriod returns Fnd _Reg Registered:

ALL RECORDS([Invoices])
ORDER BY([Invoices];[Invoices]InvoiceDate; <)
$msg_t:="This is an optional feature, so only 20 records will be used until it is purchased."
Fnd_Reg_DemoMessage ("FancyGraphs";$msg_t)
Fnd_Reg_DisplayDialog ("FancyGraphs") * Will not appear if unlocked.
If (Fnd_Reg_RegistrationState ("FancyGraphs")#Fnd_Reg_Registered)
REDUCE SELECTION([Invoices];20) " Use just 20 records in demo mode.
ORDER BY/([Invoices];[Invoices]InvoiceDate;<) ° Resort them.
End if
DoFancyGraphs

Limiting the Number of Concurrent Users

Many 4D projects are licensed per consecutive user. Although 4D Server can control the number of
consecutive users, it would be possible for your customer to purchase an additional 4D Client license
directly from 4D without also licensing your custom application for another user. To prevent this, you can
include the number of licensed users in the unlock code.

To do this, we first need to modify our call to Fnd_RegG_GenerateUnlockCode by passing it some
additional license information:

$personalization_t:=[Customer]CompanyName
$users_t:=String([Customer]LicensedUsers)
$unlock_t:=Fnd_Reg_GenerateUnlockCode ("MySecretKey";"";$personalization_t;$users_t)

This license information is added to the unlock code. For example, if the customer is limited to 25 users,
the registration code might look something like this:

57FA-506C-B516/25

This makes it easy to see that the unlock code is valid for 25 users. But because of the way the unlock
code is constructed, simply changing the number at the end of the unlock code will render it useless.

Now in your application, you can retrieve this number using the Fnd_Reg_GetLicenselnfo function:

$licensedUsers_t:=Fnd_Reg_GetLicenselnfo

If no unlock code has been entered, the Fnd_Reg_GetLicenselnfo function will return an empty
string.

Foundation Developer Reference 199 Registration Component

Locking the Application to a Specific Computer

You may wish to register your application to a specific computer. To do this, you can get the computer’s
ethernet ID or serial number (another plugin will be needed for this) and use part of it as the license
information (using the entire ethernet ID address may be too much for the average person to enter
correctly).

Another technique would be to procedurally add it to the personalization used. Or use it instead of asking
the user to enter any personalization information. This would require some minor modifications to the
component’s source code, since you cannot procedurally supply the personalization information.

(learing the Registration Data

To allow the user to reset the registration period for a specific feature, call Fnd_Reg_Reset. To reset
multiple features, you must call this routine once for each feature.

Keep in mind that all registration information is essentially reset when a new data file is created.

How the Unlock Code is Generated

The following information is presented primarily for developers that wish to generate unlock codes using
programs other than 4D. If you are using the Fnd_RegG component to generate unlock codes from your
4D-based customer database, you will not need to know any of the information presented in this section.

MD5

The unlock code generated by the Fnd_RegG component is simply the MD5 hash of your secret key, the
feature code, the user’s name (or company name or other unique information) and any additional license
information you may wish to add. By using an industry-standard MDS5 hash, it is possible to generate a
license code using any language (even AppleScript), but only if you know the secret product key. Since it
is not possible to determine the input value from an MD5 hash, this provides more than adequate security
for most applications. You can learn more about the MD5 message digest here:

http://www.fags.org/rfcs/rfc1321.html

An MD5 value works very well for an unlock code since it consists only of numbers and the letters A
through G (hexadecimal values). Unlike more complex unlock codes, hexadecimal values do not include
the letters I, L, or O, so there is little chance of confusing these letters with the numbers 1 and 0.

Foundation Developer Reference 200 Registration Component

Input Values

The input string for generating the MDS5 is a combination of these strings:

secret product key

feature name

user identification information
license information

“w,

These values are combined into a single string separated by double colons (“::”). Then the entire string
is converted to an ISO 8859-1 format to ensure that an identical unlock code will be generated on both
Macintosh and Windows.

Finally, this string is then used to generate an MDS5 value.

Formatting

Rather than using the entire 32 character MD5 value, Foundation uses just the first 12 characters.
Although this does not offer the security of using all 32 characters, it offers sufficient security for almost
any 4D-based application. Dashes are also added between each four characters to make the code easier to
read.

Verification

It is not possible to take an MD5 value (especially a partial one) and convert it back to the original string
used to create it. So instead the application uses the same process as the registration generator to create
an unlock code, and this unlock code is compared to the unlock code entered into the registration dialog
by the end user. If the unlock codes match, the entered value is stored in the data file. The application
supplies the secret product key and the feature code, and the user types in the personalization
information and the license info (as part of the unlock code).

Each time the program is used the unlock code is retrieved from the data file and this process is repeated
to verify that the saved unlock code is still valid.

An Example

To explain the process, we will use an example. Let us say we have selected “jay%99west(@” as our secret
product key, and that we want to generate an application unlock code for a customer named John Doe.
Additionally, we want to indicate that the application can be used with 10 clients, so we want to add
“10-user” as the license information.

First, we will concatenate the strings into one string we can pass to our MD-5 routine. We need to
separate each of the input strings with two colons (“::"). This is done just to make the string slightly easier
to read during development. We combine the strings in this order:

secret product key::feature name::user identification information::license information

Foundation Developer Reference 201 Registration Component

So our input string for this example looks like this:
jay%99west@::APPL::John Doe::10-user

The input string contains “::APPL::” because Foundation uses “APPL” as the feature code for the
application.
Even if no license information is used, the two-colon separator is still used after the user name:

jay%99west@::APPL::John Doe::

“w,

Note that any of the input values may already include the “:.” character sequence. That is not a problem,
since there is no need to parse this data into its separate elements.

Just to avoid problems, none of the input values should contain a carriage return or a line break.

Next, before generating an MD5 value from this string, the string is converted to ISO 8859-1. Since none
of our text includes any high-ASCII characters, it still looks the same after this conversion:

jay%99west@::APPL::John Doe::10-user

And finally, the input string is converted to an MD5 value. The MD5 value for our example looks like this:
35bf6fdéb73cle29ac15a50316c4cche

Now we take the first 12 characters and toss in a couple of dashes. We also convert the letters to
uppercase:

35BF-6FD6-B73C

Foundation Developer Reference 202 Registration Component

Language Reference

Here are the routines in Foundation’s Registration component:

Fnd_Reg_BuyNowButton
Fnd_Reg_BuyNowURL
Fnd_Reg_DemoDays
Fnd_Reg_DemoDialog
Fnd_Reg_DemoDialogFormMethod
Fnd_Reg_DemoMessage
Fnd_Reg_FeatureName
Fnd_Reg_GetDemoDaysRemaining
Fnd_Reg_ GetExpirationDate
Fnd_Reg_GetLicenselnfo

Fnd_Reg_GetUserName
Fnd_Reg_Info
Fnd_Reg_RegDialogFormMethod
Fnd_Reg_RegDialogOKButton
Fnd_Reg_RegistrationDialog
Fnd_Reg_RegistrationState
Fnd_Reg_Reset
Fnd_Reg_SetSecretKey
Fnd_Reg_StartDemoPeriod

Fnd_Reg_BuyNowBution

Fnd_Reg_BuyNowButton

Parameter Type
No parameters required.

Description

This method is called from the Buy Now button’s object method in the component’s two public forms. It
opens the URL specified by a previous call to Fnd_Reg_BuyNowURL.

Fnd_Reg_BuyNowURL

Fnd_Reg_BuyNowURL ({feature code{; URL}}) = Text

Parameter Type
feature code Text
URL Text
Function result Text

Description

un

A registration feature code or “” (optional)
The new Buy Now button URL (opfional)
The current URL

This routine allows the developer to get and set the URL to display when the Buy Now button is
clicked. Each feature has its own Buy Now URL. In most cases you will call this routine before calling

Fnd_Reg_DemoDialog.

To set a new URL, pass it as the second parameter to this method. To set the URL for the application, pass

a blank string as the feature code:

Fnd_Reg_BuyNowURL ("";"http://www.MyWebSite.com/buynow.html")

If called without a second parameter, this routine will return the currently set URL. To get the URL for the
“APPL” feature you can also omit the feature code parameter:

Foundation Developer Reference

203 Registration Component

$url_t:=Fnd_Reg_BuyNowURL

Fnd_Reg_DemoDays

Fnd_Reg_DemoDays ({feature code{; days}}) = Longint

Parameter Type Description

feature code Text A registration feature code or “” (optional)
URL Longint The new demo period in days (optional)
Function result Longint The current number of demo days

This routine allows the developer to get and set the number of demo days for the specified feature.
Generally this routine should be called at startup before any calls to Fnd_Reg_DemoDialog.
Calling this method does not modify the expiration date if it has already been set by a call to
Fnd_Reg_StartDemoPeriod.

The default demo period for all features is 30 days. To set a different value, pass it as the second
parameter to this method. To set the URL for the application, pass a blank string as the feature code. This
example sets the demo days for the “invoicing” feature to 15 days.

Fnd_Reg_DemoDays ("invoicing";15)

If called without a second parameter, this routine will return the currently set demo period:

$demoDays_i:=Fnd_Reg_DemoDays ("invoicing")

To get the URL for the “APPL” feature you can also omit all of the parameters.

Fnd_Reg_DemoDialog

Fnd_Reg_DemoDialog ({feature code})

Parameter Type Description

un

feature code Text A registration feature code or “” (optional)

This routine displays the demo message window if the user has not yet entered an unlock code for the
specified feature. To display the application’s demo window, call this method without parameters at
startup after calling Fnd_Reg_SetSecretKey:

Fnd_Reg_SetSecretKey ("MySecretKey")
Fnd_Reg_DemoDialog

To display the demo dialog before performing an optional feature, call this method with the feature code:

Foundation Developer Reference 204 Registration Component

Fnd_Reg_DemoDialog ("invoicing")

If the user has already entered a valid unlock code for the feature, the dialog will not be displayed and
execution of method will continue uninterrupted.

You can call other registration routines before calling this method to configure the look and behavior of
the demo dialog. See the Quick Start topic for an example. You can also modify the public
“Fnd_Reg DemoDialog” form to completely customize the appearance of the window.

Fnd_Reg_DemoDialogFormMethod

Fnd_Reg_DemoDialogFormMethod

Parameter Type Description

No parameters required.

This method must be called from the “Fnd_Reg DemoDialog” form method.

Fnd_Reg_DemoMessage

Fnd_Reg_DemoMessage ({feature code{; message}}) = Text

Parameter Type Description

feature code Text A registration feature code or “" (optional)
message Text The new demo dialog message fext (optional)
Function result Text The current message text

This routine allows the developer to get and set the demo message for the specified feature code. If
this method is not called the default message contained in the localization strings is used, and can be
edited using the Foundation Localization Editor. In most cases you will call this routine before calling
Fnd_Reg_DemoDialog.

To set a new message, pass a second parameter to this method. To set the demo message for the
application, pass a blank string as the feature code:

Fnd_Reg_DemoMessage ("";"This application will expire in 20 days.")

Instead of hard-coding the number of days, you can instead include “<<1>>"in the text passed to this
method. When the dialog is displayed, this marker will be replaced by the number of days set by calling
Fnd_Reg_DemoDays:

Fnd_Reg_DemoMessage ("";"This application will expire in <<1>> days.")

If called without a second parameter, this routine will return the currently set demo message. To get the
demo message for the “APPL” feature you can also omit the feature code parameter:

Foundation Developer Reference 205 Registration Component

$message_t:=Fnd_Reg_DemoMessage

Fnd_Reg_FeatureName

Fnd_Reg_FeatureName ({feature code{; feature name}}) = Text

Parameter Type Description

feature code Text A registration feature code or “” (optional)
feature name Text The feature code’s display name (optional)
Function result Text The current feature code name

This feature name is displayed at the top of the Demo Dialog and in the text message of the Registration
Dialog. You can call this method to set the display name for the application or any optional feature. By
default, Foundation uses the database name set in the Fnd_Hook_Shell_Setup hook. If you are not
using the Foundation Shell, you will need to supply the application name using this method or using the
Fnd_Gen_SetDatabaselnfo method to set a “DatabaseName” value.

To set the feature name, pass a second parameter to this method:

Fnd_Reg_FeatureName ("INV";"Invoicing")

This method can also be used to get a feature name:
$featurName_t:=Fnd_Reg_FeatureName ("INV")

If the feature does not exist or no name has been specified, a blank string is returned.

Fnd_Reg_GetDemoDaysRemaining

Fnd_Reg_GetDemoDaysRemaining ({feature code}) = Number

Parameter Type Description
feature code Text A registration feature code or “” (optional)
Function result Number The number of demo days remaining

This function returns the number of days left in the demo. This value is calculated using the
number of demo days for the feature and the date the demo period was started by a call to
Fnd_Reg_StartDemoPeriod.

$dayslLeft_i:=Fnd_Reg_GetDemoDaysRemaining

Foundation Developer Reference 206 Registration Component

Fnd_Reg_ GetExpirationDate

Fnd_Reg_GetExpirationDate ({feature code}) = Number

Parameter Type Description
feature code Text A registration feature code or “” (optional)
Function result Date The date the demo will expire

This function returns the specified feature’s expiration date. This value is calculated using the
number of demo days for the feature and the date the demo period was started by a call to
Fnd_Reg_StartDemoPeriod.

$expires_d:=Fnd_Reg_GetExpirationDate

If the demo has not been started, the number of demo days is added to the current date, and the resulting
date is returned.

Fnd_Reg_ Getlicenselnfo

Fnd_Reg_GetLicenselnfo ({feature code}) = Text

Parameter Type Description
feature code Text A registration feature code or “” (optional)
Function result Text The feature’s license info

This function returns the license information that was included with the unlock code entered by the user.
If the feature has not yet been registered, then a blank string is returned.

$licenselnfo_t:=Fnd_Reg_GetLicenselnfo ("INV")

Fnd_Reg_GetUserName

Fnd_Reg_GetUserName ({feature code}) = Text

Parameter Type Description
feature code Text A registration feature code or “” (optional)
Function result Text The feature’s license info

This function returns the user name or other personalization information that was entered by the end
user when registering the product or feature. If the feature has not yet been registered, then a blank
string is returned.

$userName_t:=Fnd_Reg_GetUserName

Foundation Developer Reference 207 Registration Component

Fnd_Reg_Info

Fnd_Reg_Info (info requested) = Text

Parameter Type Description
info requested Text Info desired
Function Result Text Response

This function returns the requested information about the Registration component.

$version_t:=Fnd_Reg_Info ("version")

The Fnd_Reg_Info method will respond to these requests:

Request Response Example
name The component’s full name Foundation Registration
version The component's version number 42

This routine can also be called using the Fnd_Gen_Componentinfo method without first testing to see
if the component is installed:

$version_t:=Fnd_Gen_ComponentInfo ("Fnd_Reg";"version")

See the Fnd_Gen_Componentinfo method for more information.

Fnd_Reg_RegDialogFormMethod

Fnd_Reg_RegDialogFormMethod

Parameter Type Description
No parameters required.

This method must be called from the “Fnd_Reg_RegisterDialog” form method.

Fnd_Reg_RegDialogOKButton

Fnd_Reg_RegDialogOKButton

Parameter Type Description
No parameters required.

This method is called from the OK button’s object method in the component’s
“Fnd_Reg RegistrationDialog” public form. When clicked it verifies the user name and unlock code
entered by the end user.

Foundation Developer Reference 208 Registration Component

Fnd_Reg_RegistrationDialog

Fnd_Reg_RegistrationDialog ({feature code})

Parameter Type Description

un

feature code Text A registration feature code or “” (optional)

This routine displays the registration dialog window if the user has not yet entered an unlock code for the
specified feature. It is not necessary to use this method, since the user can display the registration dialog
by clicking the Register button in the Demo Dialog.

To request the unlock code for the application, no parameters are necessary:

Fnd_Reg_RegistrationDialog

To request the unlock code for a specific feature, pass the feature code parameter:

Fnd_Reg_RegistrationDialog ("webserver")

If the user has already entered a valid unlock code for the feature, the dialog will not be displayed and
execution of method will continue uninterrupted.

Fnd_Req_RegistrationState

Fnd_Reg_RegistrationState ({feature code}) = Number

Parameter Type Description
feature code Text A registration feature code or “” (optional)
Function result Number The feature’s registration state

This function returns the current registration state for the specified feature:

$state_i:=Fnd_Reg_RegistrationState

The value returned will be equal to one of these constant values:

Fnd_Reg_PreDemo
Fnd_Reg_Demo
Fnd_Reg_Expired
Fnd_Reg_Registered

Fnd Reg PreDemo: The feature has not been registered yet and the demo period has not been started
(there is no expiration date).

Fnd Reg Demo: The feature has not been registered and the demo period has been started
(there is an expiration date), but has not yet expired. Use the Fnd_Reg_GetExpirationDate or
Fnd_Reg_GetDemoDaysRemaining functions to determine when the trial period will expire.

Foundation Developer Reference 209 Registration Component

Fnd Reg Expired: The feature has not been registered and the demo period’s expiration date has
passed. Call Fnd_Reg_GetExpirationDate to determine when the trial expired.

Fnd Reg Registered: The feature has been registered.

Fnd_Reg_Reset

Fnd_Reg_Reset ({feature code})

Parameter Type Description

un

feature code Text A registration feature code or “” (optional)

Call this to clear any existing registration information for the specified feature:
Fnd_Reg_Reset ("webserver")
If called with no parameters, this routine will clear the registration information for the application.

In addition to removing a previously entered user name and unlock code, this routine clears the start date
set by calling Fnd_Reg_Init.

Fnd_Reg_ SetSecretKey

Fnd_Reg_SetSecretKey (key)

Parameter Type Description
key Text The secret product key

Use this method to set the secret product key for the application:
Fnd_Reg_SetSecretKey ("mySecretProductKey_773")
This must be the first Registration component method called. It should be called only once.

See the Techniques section of this chapter for important information about selecting a secret product key
for your application.

Foundation Developer Reference 210 Registration Component

Fnd_Reg_StartDemoPeriod

Fnd_Reg_ StartDemoPeriod ({feature code})

Parameter Type Description
feature code Text A registration feature code or “” (optional)

Call this method to begin the demo period. If the demo period has already been started, this routine will
do nothing.

Fnd_Reg_StartDemoPeriod

Additional Credits

Thanks to Vincent Tournier of e-Node for the French localization and for his outstanding help with alpha
testing this component.

Foundation Developer Reference 21 Registration Component

Shell Component
Fnd_ Shell

’:[;16 Foundation Shell component is the heart of the Foundation Shell. This
component was not designed to be of much use except with all of the other
Foundation components. Except for modifying the hooks, you generally will
never need to call any of these components, unless you have a routine that
needs to duplicate a shell action, such as displaying the Administration Dialog.

This component requires the following Foundation components:

Foundation Art Component Foundation Dialog Component
Foundation General Component Foundation 10 Component
Foundation List Component Foundation Localization Component
Foundation Preferences Component Foundation Records Component
Foundation Virtual Structure Component Foundation Windows Component

Language Reference

Here are the routines in Foundation’s Shell component:
Fnd_Hook_Shell_Setup Fnd_Shell_Administration

Foundation Developer Reference 212 Shell Component

Fnd_Hook_Shell_Administration
Fnd_Hook_Shell_Find
Fnd_Hook_Shell_InitializePluglns
Fnd_Hook_Shell_OpenTable
Fnd_Hook_Shell_NavPalette
Fnd_Hook_Shell_Print
Fnd_Hook_Shell_Quit
Fnd_Hook_Shell_Sort
Fnd_Hook_Shell_SpecialFunctions
Fnd_Hook_Shell_Startup

Fnd_Shell_ExcludeFromQuit
Fnd_Shell_Info
Fnd_Shell_IsRunning
Fnd_Shell_OpenTableAdd
Fnd_Shell_NavigationPalette
Fnd_Shell_OnStartup
Fnd_Shell_OpenTableAdd
Fnd_Shell_OpenTableDialog
Fnd_Shell_Print
Fnd_Shell_Show4DSplashScreen
Fnd_Shell_SpecialFunctions

Fnd_Hook_Shell_Setup

Fnd_Hook_Shell_Setup

Parameter Type

No parameters required.

Description

Here is where the developer sets up information about this particular database.

Fnd_Gen_SetDatabaselnfo ("NAME";"Super Accounting Program")
Fnd_Gen_SetDatabaselnfo ("VERSION";"5.0.7b")

Fnd_Gen_SetDatabaselnfo ("COPYRIGHT";"Copyright ©2009 Amazing Company, Inc.")
Fnd_Gen_SetDatabaselnfo ("URL";"http://www.AmazingCompany.com/")

Fnd_Hook_Shell_Administration

Fnd_Hook_Shell_Administration

Parameter Type

No parameters required.

Description

This hook is called to display the shell's Administration Dialog. We have preconfigured it to display 4D's
Password Editor, Foundation's List Editor and Sequence Number Editor, and 4D's Import and Export
Editors. You can remove these options, or add new options by calling Foundation's Fnd_Hook_List
SetEditableLists method.

Foundation Developer Reference 213 Shell Component

Fnd_Hook_Shell_Find

Fnd_Hook_Shell_Find

Parameter Type Description
No parameters required.

This hook gives you a place to configure Foundation's Find Dialog if you want to alter the default
configuration. You can call the Fnd_Gen_CurrentTable method to determine the table in use. See the
Find Component chapter for more information.

Fnd_Hook_Shell_InitializePluglns

Fnd_Hook_Shell_InitializePluglns

Parameter Type Description
No parameters required.

Use this method to initialize any plugins by calling their activation routines. This hook is called in the On
Startup method for single-user and 4D Client, and also from the On Server Startup method when using
4D Server.

Fnd_Hook_Shell_OpenTable

Fnd_Hook_Shell_OpenTable

Parameter Type Description
No parameters required.

This hook sets up Foundation's Open Table dialog before it is displayed. Call
Fnd_Hook_Shell_NavigationPalette to specify the table names to display.

Fnd_Hook_Shell_NavPalette

Fnd_Hook_Shell_NavPalette

Parameter Type Description
No parameters required.

Foundation Developer Reference 214 Shell Component

This hook is called each time the Navigation Palette command is selected from the Tools menu. Use
it to configure Foundation's Navigation Palette if you want to alter the default configuration. See the
Navigation Component (Fnd_Nav) chapter for more information.

Fnd_Hook_Shell_Print

Fnd_Hook_Shell_Print

Parameter Type Description
No parameters required.

This hook is called to display the shell's Print dialog. We have preconfigured it to display 4D's
Quick Report Editor and Label Editor. You can remove these options, or add new options by calling
Foundation's Fnd_Hook_List_SetEditableLists method.

Fnd_Hook_Shell_Quit

Fnd_Hook_Shell_Quit =» Boolean

Parameter Type Description
Function result Boolean Allow Foundation to quit?

The shell calls this hook when quitting the database, just before calling QUIT 4D (if compiled). Return
True to allow Foundation to quit the application normally. If you return False, Foundation will abort any
attempts to quit until the next time quit is selected from the File menu.

If you return False, it is your responsibility to let the user know why their attempt to quit the database is
being ignored

You can also add any down code of your own in this method.

Fnd_Hook_Shell_Sort

Fnd_Hook_Shell_Sort

Parameter Type Description
No parameters required.

This hook gives you a place to configure Foundation's Sort dialog if you want to alter the default
configuration. You can call the Fnd_Gen_CurrentTable method to determine the table in use.

Foundation Developer Reference 215 Shell Component

Fnd_Hook_Shell_SpecialFunctions

Fnd_Hook_Shell_SpecialFunctions

Parameter Type Description
No parameters required.

This hook is called to display the shell's Special Functions Dialog. Routines in this dialog are available to
all database users. By default, there are no options set up in this dialog. You can add new commands by
calling Foundation's Fnd_Hook_List_SetEditableLists method.

Fnd_Hook_Shell_Startup

Fnd_Hook_Shell_Startup

Parameter Type Description
No parameters required.

Place any startup code here that you want to run while the startup dialog is displayed.

You can also call your startup stuff before or after Fnd_Shell_OnStartup is called from the On Startup
database method. However, code placed here will not be executed when you relaunch Foundation during
development.

Fnd_ Shell_Administration

Fnd_Shell_Administration

Parameter Type Description
No parameters required.

Call this method to display the Foundation Shell's Administration Dialog.

Fnd_ Shell _ExcludeFromQuit

Fnd_Shell_ExcludeFromQuit (name)

Parameter Type Description
name Text Nume of the process

Foundation Developer Reference 216 Shell Component

Normally when the user selects Quit from the File menu, Foundation does a call process to each process
that was procedurally created and waits for all of these processes to quit before it calls QUIT 4D. If any of
these processes do not end, Foundation displays a message to the user to tell them it cannot quit because
a process will not end.

If you have a process that you do not want to end when the user selects quit, or that you are unable to
quit (perhaps because it was launched by a plugin) then you can pass that process name to this method,
and Foundation will not wait for it to quit before calling QUIT 4D.

Fnd_Shell_Info

Fnd_Shell_Info (info requested) = Text

Parameter Type Description
info requested Text Info desired
Function Result Text Response

Returns the requested information about the component.

$version_t:=Fnd_Shell_Info ("version")

The Fnd_Shell_Info method will respond to these requests:

Request Response Example
name The component's full name Foundation Shell
version The component's version number 4.2

This routine can also be called using the Fnd_Gen_Componentinfo method without first testing to see
if the component is installed:

$version_t:=Fnd_Gen_ComponentInfo ("Fnd_Shell";"version")

See the Fnd_Gen_Componentinfo method for more information.

Fnd_Shell_IsRunning

Fnd_Shell_IsRunning =» Boolean

Parameter Type Description
Function result Boolean Is the shell running

This function returns True if the shell is running. This method is only needed during development. It will
return False if you have selected Quit from the File menu, and the shell has switched back to menu bar
#1.

Foundation Developer Reference 27 Shell Component

Fnd_Shell_NavigationPalette

Fnd_Shell_NavigationPallette

Parameter Type Description
No parameters required.

Call this method to display the Navigation Palette.

Fnd_Shell _OnExit

Fnd_Shell_On Exit

Parameter Type Description
No parameters required.

This method must be called from the database's On Exit and On Server Shutdown database methods.

Fnd_Shell_OnStartup

Fnd_Shell_OnStartup

Parameter Type Description
No parameters required.

The startup routine for the Foundation Shell. This method must be called from the database's On Startup
and On Server Startup database methods.

Fnd_Shell_OpenTableDialog

Fnd_Shell_OpenTableDialog

Parameter Type Description
No parameters required.

Displays a dialog with the names of all visible tables. If the user selects one and clicks the OK button the
table is displayed in a new window (even if that table is already displayed in a window).

You can configure the tables listed in this dialog from the Fnd_Hook_Shell_OpenTable hook.

Foundation Developer Reference 218 Shell Component

The table names and their order are determined by the Virtual Structure Component (Fnd_VS), if that
component is installed.

Fnd_Shell _Print

Fnd_Shell_Print

Parameter Type Description
No parameters required.

Call this method to display the shell's Print Dialog. Configure the contents of the dialog using the
Fnd_Hook_Shell_Print hook.

Fnd_Shell_Show4DSplashScreen

Fnd_Shell_Show4DSplashScreen

Parameter Type Description
No parameters required.

Allows the developer to display the 4D splash screen, or default window, so the database can be used in
the User environment. No longer necessary in 4D v11, as there is no User environment.

Fnd_Shell_SpecialFunctions

Fnd_Shell_SpecialFunctions

Parameter Type Description
No parameters required.

Call this method to display Foundation Shell's Special Functions Dialog. You can configure the contents of
this dialog from the Fnd_Hook_Shell_SpecialFunctions hook.

Foundation Developer Reference 219 Shell Component

Sort Component
Fnd_Sort

’:[;16 Sort component provides a simplified way for the user to sort the current

selection of records. It will automatically configure itself and sort the current selection of records, so
no special setup is required. However, you can use these commands to change the default Sort dialog
settings. You can call these commands from the Fnd_Hook_Shell_Sort hook.

Language Reference

Here are the routines in Foundation’s Sort component:

Fnd_Sort _AddField Fnd_Sort_Display
Fnd_Sort_AddSeparator Fnd_Sort_Info
Fnd_Sort_AddTable Fnd_Sort_OrderByEditor
Fnd_Sort_Direction Fnd_Sort_SelectedField

Foundation Developer Reference 220 Preferences Component

Fnd_Sort_AddField

Fnd_Sort _AddField (->field{; position})

Parameter Type Description
field Pointer Pointer to the field to add
position Longint Position in which to add the item (optional)

The Fnd_Sort_AddField routine lets the developer add a field to the Sort dialog. If position is not
specified, the field is added to the end of the selection list.

Fnd_Sort_AddField (->[Contact]Last Name)
Fnd_Sort_AddField (->[Company]Company Name)
Fnd_Sort_AddField (->[Contact]First Name;1) * Put it before the First Name

The field can be from the current or related table.

Fnd_Sort_AddSeparator

Fnd_Sort_AddSeparator ({position})

Parameter Type Description
position Longint Position of the separator (optional)

The Fnd_Sort_AddSeparator routine adds a separator line at position to the list of searchable fields to
the Sort dialog.

Fnd_Sort_AddField (->[Contact]First Name)
Fnd_Sort_AddField (->[Contact]Last Name)
Fnd_Sort_AddSeparator

Fnd_Sort_AddField (->[Company]Company Name)

Fnd_Sort_AddTable

Fnd_Sort_AddTable (->table{; position})

Parameter Type Description
table Pointer A pointer fo the table to add
position Longint Position in which to add the item (optional)

The Fnd_Sort_AddTable routine loads the visible, sortable fields for the specified table into the field
pop-up menu.

For example, this will add all of the sortable fields for both the Contact and Company table to the pop-up
menu in the Sort dialog:

Foundation Developer Reference 221 Preferences Component

Fnd_Sort_AddTable (->[Contact])
Fnd_Sort_AddTable (->[Company])

Fnd_Sort_Direction

Fnd_Sort_Direction ({direction}) =¥ Longint

Parameter Type Description
direction Longint Sort direction (1 or -1) (optional)
Function result Longint Current sort direction setting

This command allows the developer to set or get the currently selected sort direction for the current
process. If a valid direction is specified, this routine will make it the default direction for subsequent sorts,
until the user changes the sort direction setting.

Pass 1 for an ascending sort, or -1 for a descending sort.

Fnd_Sort_Direction (-1) * Descending sort.

This function also returns the sort direction set for the current process, so it can be stored for later use in
another process or the next time the database is used.

Fnd_Sort_Display
Fnd_Sort_Display

Parameter Type Description
table Pointer Pointer fo the table to use (optional)({->table})

This method displays Foundation's simple Sort dialog. If no table is specified, the table returned by the
Fnd_Gen_CurrentTable function is used.

Fnd_Sort_Info

Fnd_Sort_Info (info requested) =» Text

Parameter Type Description
info requested Text Info desired
Function Result Text Response

Returns the requested information about the component.

Foundation Developer Reference 222 Preferences Component

$version_t:=Fnd_Sort_Info ("version")

The Fnd_Sort_Info method will respond to these requests:

Request Response Example
name The component’s full name Foundation Sort
version The component's version number 4.0

This routine can also be called using the Fnd_Gen_Componentinfo method without first testing to see
if the component is installed:

$version_t:=Fnd_Gen_ComponentInfo ("Fnd_Sort";"version")

See the Fnd_Gen_Componentinfo method for more information.

Fnd_Sort_OrderByEditor

Fnd_Sort_OrderByEditor

Parameter Type Description
table Pointer Pointer fo the table to use (optional)({->table})

This method displays 4D’s built-in Order By dialog. If no table is specified, the table returned by the
Fnd_Gen_CurrentTable function is used.

This routine calls 4D’s AUTOMATIC RELATIONS command before displaying the Order By editor
to enable automatic relations. AUTOMATIC RELATIONS is called again after the dialog is closed to
restore the relations to their default state.

Fnd_Sort_SelectedField

Fnd_Sort_SelectedField ({>field}) =» Pointer

Parameter Type Description
field Pointer The default field setting (optional)
Function result Pointer Current default field

Allows the developer to set or get the currently selected sort field. If a field pointer is specified, this
routine will make it the default selection if the field is available in the list. If not, nothing is changed and
no error is displayed.

Fnd_Sort_SelectedField (->[Contact]Last Name) ° Set the default sort field.

Foundation Developer Reference 223 Preferences Component

Sequence Numbers Component
(Fnd_SqNo)

F oundation’s Sequence Numbers component gives you procedural control over
sequential numbers in your database. It includes routines to get sequence numbers and to return those
numbers that you have not used, but want to use later.

A Sequence Number Editor window is also included to allow the designer or the database administrator to
edit the sequence numbers from the Custom Menus environment.

Foundation Developer Reference 224 Sequence Numbers Component

Installation

This section describes how to install the Fnd_SqNo component into a database that is not based on
the Foundation Shell. If you started your project using the Foundation Shell, the Sequence Numbers
component is already installed and integrated into your database.

The Sequence Numbers component stores information in a database table.

4D v11 does not allow tables in components. To work around this problem, the Foundation components
do not include any 4D tables. Instead, you will need to add any required tables to your structure before
installing the component. Internally the components create pointers to the structure’s tables and fields
and then uses these throughout the code.

Create the [Fnd_SqNo] Table

To use the Foundation Sequence Numbers component, you will first need to add a table to your
structure. You can simply copy the [Fnd_SgNo] table from the Product Sales.4DB sample file, or you
can create it manually in 4D (this is a good opportunity to reuse an unused or deleted table). The table
must be named “Fnd_SgNo” and must contain the fields indicated below. The order of the fields is
not important, and it is okay if the table contains other unused fields (in case you are reusing a table).
However, the field names and types must be set up exactly as shown below.

Field Name Type Attributes
[Fnd_SqNo]ID Long Integer Indexed
[Fnd_SqNo]Group_Name Alpha 80 Indexed
[Fnd_SqNo]Nexi_Number Long Integer

[Fnd_SqNo]Recycle_Bin BLOB

[Fnd_SqNo]Designer_Only Boolean Indexed

Install the Component

The Foundation Sequence Numbers component requires the following components (shown with
minimum required version numbers). It also requires version 4.2 or later of the Foundation Extras

plugin.
Component Minimum Version
Fnd_SqNo 42
Fnd_Dlg 413
Fnd_Wnd 414
Updating the Component

If you later upgrade (or reinstall) the component, you will be asked if you want to update the public
Fnd_SgNo_Preferences form. Click No to preserve any changes you may have made to this form. Click
Yes only if you have not customized this form for your application, or if you wish to revert to the default
layout.

Foundation Developer Reference 225 Sequence Numbers Component

If you are upgrading a database that currently has version 4.1.4 or earlier of the Foundation Sequence
Numbers component, you will need to first uninstall that component, then install the 4.2 or later version.
The 4.2 and later versions cannot directly update an existing older version of the component.

Removing the earlier version of the component (which included a table) will leave a table named
“Deleted table” in your structure. After installing the new version of the component, launch 4D and switch
to the Design environment (ignore the error messages that will be displayed). Change the name of the
deleted table that looks like the one shown here back to “Fnd_SqNo.” Then quit and relaunch 4D. This
time the database should launch without errors.

| Deleted table

1D

L

Croup_MName

ABD

Mext_Mumber

Recycle_Bin

Designer_Only

Foundation Developer Reference

226

Sequence Numbers Component

Language Reference

Here is the list of routines in Foundation’s Sequence Numbers component:

Fnd_Hook_SqNo_SetIDField Fnd_SqNo_lInfo
Fnd_SqNo_Editor Fnd_SqNo_Put
Fnd_SqNo_Enable Fnd_SqNo_Set
Fnd_SqNo_Fix Fnd_SqNo_SetRecordID

Fnd_SqNo_Get

Fnd_Hook_SqNo_ SetIDField

Fnd_Hook_SqNo_SetIDField (->table) = Pointer

Parameter Type Description
table Pointer Pointer fo the table
Function result Pointer Pointer fo the table's key field

Foundation's Sequence Number routines assume the first field for every table is the table's key field. If this
is not the case, you can show Foundation which field to use for the key field using this hook.

The key field must be a long integer and must be indexed to work properly with the Sequence Numbers
component.

This function may return a nil pointer if the table does not contain an ID field.

Fnd_SqNo_Editor
Fnd_SqNo_Editor

Parameter Type Description
No parameters required.

This method displays Foundation’s Sequence Number Editor dialog in a new process.

Foundation Developer Reference 227 Sequence Numbers Component

Fnd_SqNo_Enable

Fnd_SqNo_Enable (group name{; start number})

Parameter Type Description
group name Text Group name
start number Longint Starting number (optional)

This method creates the sequence number group if it does not already exist. Optionally, it starts the
numbering at the specified number. Otherwise, it starts at 1.

The new group will be editable by the database administrator.
Fnd_SqgNo_Enable ("Invoice Numbers";1001)

Fnd_SqNo_Fix
Fnd_SqNo_Fix (->table)

Parameter Type Description
table Pointer Pointer fo the table to fix

If you ever have a problem with the sequence numbers for record IDs set by the
Fnd_SqgNo_SetRecordlD command, this command can fix the problem. It determines the next valid
record number for the specified table by analyzing the index file. It then sets the next sequence number
for the table. The change is automatically saved by this command.

Fnd_SgNo_Fix (->[Contacts])

This action can also be performed by clicking the Fix button in the Sequence Number Editor dialog.

Foundation Developer Reference 228 Sequence Numbers Component

Fnd_SqNo__Get

Fnd_SqNo_Get (group name) = Number

Parameter Type Description
group name Text The sequence number group name
Function result Longint Next number in the sequence

This function returns the next unique positive long integer based on the group name you pass. This
function returns 0 if it is unable to get the next sequence number.
[Invoices]Invoice_ Number:=Fnd_SqgNo_Get ("Invoice Numbers")
If([Invoices]Invoice_Number=0) * We were unable to get a sequence number.
ALERT("Unable to get a new invoice number for this record.")

CANCEL
End if

If the group does not already exist, it is created and 1 is returned as the first number. You can use the
Fnd_SqgNo_Enable method to pre-define a group and set the starting number.

This method can safely be called from within a trigger or transaction.

If you decide you do not need the sequence number, you can return it to the queue using the
Fnd_SqgNo_Put method.

Fnd_SqNo_Info

Fnd_SqNo_Info (info requested) = Text

Parameter Type Description
info requested Text Info desired
Function Result Text Response

Returns the requested information about the component.

$version_t:=Fnd_SqgNo_Info ("version")

The Fnd_SqgNo_Info method will respond to these requests:

Request Response Example
name The component’s full name Foundation Sequence Numbers
version The component's version number 4.0.3 beta 2

This routine can also be called using the Fnd_Gen_Componentinfo method without first testing to see
if the component is installed:

$version_t:=Fnd_Gen_ComponentInfo ("Fnd_SqgNo";"version")

See the Fnd_Gen_Componentinfo method for more information.

Foundation Developer Reference 229 Sequence Numbers Component

Fnd_SqNo_Put

Fnd_SqNo_Put (group name; number to return)

Parameter Type Description
group name Text The sequence number group name
number to return Longint The number to reuse

Call this method to return a number to the specified sequence number group. If the number is higher
than the current next number, it will be ignored. It will also be ignored if it is already in the list of numbers
to reuse, or if the group name does not already exist.

Fnd_SgNo_Put ("Invoice Numbers";1005)

This method always starts a new process to return the sequence number so the calling process does not
have to wait for it to finish.

Fnd_SqNo_ Set

Fnd_SqNo_Set (group name; next number)

Parameter Type Description
group name Text A sequence number group name
next number Longint New next number in the sequence

This routine sets the next number for the specified group, and deletes any numbers previously allocated
for reuse. It can be used to fix problems with existing sequence numbers.

The number passed will be the starting number for the new group:

Fnd_SgNo_Set ("Invoice Numbers";1001) ° Start new invoice numbers at 1001.

Unlike the Fnd_SgNo_Enable method, this routine updates the next number of the group even if it
already exists.

Foundation Developer Reference 230 Sequence Numbers Component

Fnd_SqNo_SetRecordID

Fnd_SqNo_SetRecordID ({->table})

Parameter Type Description
table Pointer The table for which to return a number (optional)

Although you can use the Fnd_SgNo_Get function to get sequence numbers to be used as record

IDs, we would like to suggest another method. The Fnd_SgNo_SetRecordID method is designed
specifically to assign a value for a table. Pass it a pointer to the table for which you want it to assign a new
number, and it will assign a unique value to the key field.

Pass this routine a pointer to the table for which you want it to set the unique record ID number. If no
table is specified, either the current form table or the trigger table will be used. This method will check to
see if the record already has an ID number. If it does not, this routine will assign it a number.
Case of
: (Form event=0n Load)

Fnd_SgNo_SetRecordID
End case

This routine will call the Fnd_Hook_SqNo_SetIDField hook to determine which field is the key field
for the table. It assumes you are using a long integer key field.

One of the benefits of using this routine rather than the Fnd_SqNo_Get function is this routine tracks
the unique numbers by the table number, not by the table’s name. So you can safely change the name
of a table without updating any calls to this method. Sequence numbers assigned using this function can
also be “fixed” using the Fix button in the Sequence Number Editor or by calling the Fnd_SqNo_Fix
method.

You cannot return an unused ID number for reuse, since ID fields should not contain data that will be
important to the end-users. By not returning numbers to the sequence number for reuse, there is less
need to worry about causing delays for other users and processes wishing to access this function for the
same table.

Foundation Developer Reference 231 Sequence Numbers Component

Text Component
Fnd_Text

’:[;16 Text component provides utility routines for working with text. You can
call these commands from anywhere in your database.

Language Reference

Here is the list of routines in Foundation’s Text component:

Fnd_Text_Base64ToText Fnd_Text_Info
Fnd_Texi_Capitalize Fnd_Text_PadSpaces
Fnd_Texi_CapitalizeExclude Fnd_Texi_StripSpaces
Fnd_Text_DecodeBase64Blob Fnd_Text_TextToBase64
Fnd_Text_EncodeBase64Blob Fnd_Text_TextToMD5
Fnd_Text_FormatNumber Fnd_Text_Wrap

Foundation Developer Reference 232 Text Component

Fnd_Text_Base64ToText

Fnd_Text_Base64ToText (text) =» Text

Parameter Type Description
text Text Text fo convert from Base64 to ASCII text
Function result Text Decoded fext

This function returns the ASCII text of the converted Base64 text.
$tASCII_t:=Fnd_Text_Base64ToText (tSomeBaseb64Text_t)

Fnd_Text_Capitalize

Fnd_Text_Capitalize (text{; style}) =» Text

Parameter Type Description

text Text Text to capitalize

style Longint Capitalization style (optional)
Function result Text Capitalized text

This function returns the capitalized text. If no optional style parameter is passed, Book Title
capitalization is applied. If style parameter equals 2, the function will not use the excluded word list for
capitalization. See Fnd_Text_CapitalizeExclude command.

$capitalized_t:=Fnd_Text_Capitalize ("please capitalize this phrase.")

Fnd_Text_CapitalizeExclude

Fnd_Text_CapitalizeExclude (-> exclude array)

Parameter Type Description
exclude array Pointer Pointer fo text array of excluded words

The Fnd_Text_CapitalizeExclude method specifies the words that will not be capitalized using the
Fnd_Text_Capitalize method. To get a list of words that will be excluded from capitalization, pass an
empty text array. To set the words to exclude from the capitalization routine, pass an array with at least
one element. To clear the list of words to exclude from the capitalization routines, pass an array with one
element consisting of a blank string.

Foundation Developer Reference 233 Text Component

Fnd_Text CapitalizeExclude (->excludedwords_at)

Fnd_Text _DecodeBase64Blob

Fnd_Text_DecodeBase64Blob (-> bloh)

Parameter Type Description

blob Pointer Pointer fo a blob containing Base64 text

The Fnd_Text_DecodeBase64Blob method converts a blob from Base64 to ASCIL
Fnd_Text _DecodeBase64Blob (->blob)

Fnd_Text_EncodeBase64Blob

Fnd_Text_EncodeBase64Blob (->blobf{; line breaks?{; line break character(s)}})

Parameter Type Description

bloh Pointer Pointer fo a blob containing ASCII text
line breaks? Boolean Add line breaks (optional)

line break character Text 2 characters for line break (optional)

The Fnd_Text_EncodeBase64Blob method converts a blob from ASCII text to Base64. If the optional
line breaks is true, line breaks will be added to the blob. If the optional line break character is passed, it
will be used as the line break character in the blob.

Fnd_Text_EncodeBase64Blob (->blob; true; "LF")

Fnd_Text_FormatNumber

Fnd_Text_FormatNumber (string, format) =» Text

Parameter Type Description

string Text Numeric string to format as text
format Text Format to use

Function result Text Formatted number as fext

This function returns formatted string of the numeric string removing any dashes, "E"s, and periods.

Foundation Developer Reference 234 Text Component

$formattednumber_t:=Fnd_Text_FormatNumber ("123.45", "$### . ##")

Fnd_Text_Info

Fnd_Text_Info (info requested) =» Text

Parameter Type Description
info requested Text Info desired
Function Result Text Response

Returns the requested information about the component.

$language_t:=Fnd_Text Info (“language”)

The Fnd_Text_Info method will respond to these requests:

Request Response Example

name The component’s full name Foundation Text
version The component's version number 4.0.3 beta 1
language The currently selected language code EN

This routine can also be called using the Fnd_Gen_Componentinfo method without first testing to see
if the component is installed:

$language_t:=Fnd_Gen_ComponentInfo ("Fnd_Text";"language")

See the Fnd_Gen_Componentinfo method for more information.

Fnd_Text_PadSpaces

Fnd_Text_PadSpaces (text; length)

Parameter Type Description

text Text The text to pad with spaces
length Longint The desired length
Function result Text Modified text with spaces

This function pads the passed text with spaces to reach the desired length. If the length of the text is
greater than the length parameter, the text will be truncated.

Foundation Developer Reference 235 Text Component

$padded_t:=Fnd_Text PadSpaces ("sometext"; 10)

Fnd_Text_StripSpaces

Fnd_Text_StripSpaces (texi{; options}) =» Text

Parameter Type Description

text Text Text to strip spaces from

options Longint Options to remove spaces (optional)
Function result Text Text with spaces stripped

This function returns text with spaces removed. If options = 1, the function will remove only leading
spaces. If options = 2, the function will remove only trailing spaces. If options = 4, the function will
remove only double spaces within the text.

$stripped_t:=Fnd_Text StripSpaces (" strip spaces ")

Fnd_Text_TexiToBase64

Fnd_Text_TextToBase64 (text) =» Text

Parameter Type Description
text Text Text to encode in Baseb4
Function result Text Encoded Bused4 text

This function returns Base64 encoded text.
$baseb4_t:=Fnd_Text TextToBase64 (text_t)

Fnd_Text_TexiToMD5

Fnd_Text_TexiToMD5 (text) =» Text

Parameter Type Description
text Text Text to convert o MD5 message digest
Function result Text MDS5 message digest of text parameter

This function returns MD5 message digest of the text parameter. See RFC 1321 for more information
<http://www.faqs.org/rfcs/rfc1321.html>.

Foundation Developer Reference 236 Text Component

$MD5message_t:=Fnd_Text_TextToMD5 (text_t)

Fnd_Text_Wrap

Fnd_Text_Wrap (text; max line length) = Text

Parameter Type Description

text Text Text to wrap

max line length Longint Max line length to wrap
Function result Text Text wrapped to max line length

This function returns text wrapped to the max line length. Routine by Marco Bernasconi <mbernasconi(@
befund.com>.

$wrappedtext_t:=Fnd_Text_Wrap (text_t; 78)

Foundation Developer Reference 237 Text Component

Toolbar Component
(Fnd_Tlbr)

’:[;16 Toolbar Component allows you to display a standard Macintosh or
Windows toolbar in your forms by inheriting the Fnd_Tlbr Toolbar form. You can procedurally control
the toolbar’s icons, labels, and associated methods using the methods listed in this chapter.

This component is based on Mark Mitchenall’s free Toolbar Component (http://www.Mitchenall.com/)
and is used with permission.

To add a toolbar to your form, simply inherit the Fnd_Tlbr_Toolbar form from your own form. See the
4D Design Reference for more information about using inherited forms.

The inherited form will look similar to this in the 4D Design environment:

Foundation Developer Reference 238 Toolbar Component

To specify the icons and labels to be displayed in the toolbar, call the Fnd_Tlbr Button Add method in
the form’s On Load phase for each button:
Case of
: (Form event=0n Load)
Fnd_TIbr_Button_Add ("Buttonl";"Search";"Fnd_Bttn_Magnifier";"QUERY([Invoices])")
Fnd_TIbr_Button_Add ("Button2";"Print";"Fnd_Bttn_Printer";"PrintTransactionsReport")

End case
Fnd_TIbr_FormMethod

The first parameter is a name for the button, the second parameter is the button label, the third
parameter is the name of the icon to display, and the last parameter is the code to execute when the
button is clicked.

You will also need to call the Fnd_Tlbr_FormMethod from your form method, and activate the

On Load, On Activate, On Deactivate, and On Resize form events. This method should generally
be called after the form’s On Load phase, so that it is called after setting up the toolbar buttons with
Fnd_Tlbr_Button_Add.

If you are using the complete Foundation Shell, you may also want to call the Fnd_Gen_FormMethod
routine from the form method. This can be called any time before or after the Fnd_Tlbr_FormMethod
call.

Here is the toolbar the above code will generate when viewed on a Macintosh:

When the same code is run on Windows, the toolbar will look like this:

Foundation Developer Reference 239 Toolbar Component

By default, the “Large” toolbar style is used. The toolbar can also be displayed in a smaller size, with the
labels to the right of the icons. See the Fnd_Tlbr_Style function for more information.

Any of the icons contained in the Foundation Buttons component can be used when building the toolbar.
See the Buttons Component chapter for the complete list of available icons.

Language Reference

Here is the list of routines in the Foundation Toolbar component:

Fnd_Tlbr_Button_Add Fnd_Tlbr_Divider_Add
Fnd_Tlbr_Button_Enabled Fnd_Tlbr_FormMethod
Fnd_Tlbr_Button_lcon Fnd_Tlbr_Info
Fnd_Tlbr_Button_Label Fnd_Tlbr_Redraw
Fnd_Tlbr_Button_Menu Fnd_Tlbr_StatusMessage
Fnd_Tlbr_Button_Method Fnd_Tlbr_Platform
Fnd_Tlbr_Button_Remove Fnd_Tlbr_Style

Fnd_Tlbr_Clear

Foundation Developer Reference 240 Toolbar Component

Fnd_Tlbr_Button_Add

Fnd_Tlbr_Button_Add (name; button text; icon name; method{; keystroke})

Parameter Type Description

name Text Unique name for the button object

button fext Text Button label

icon name Text Picture Library name for the icon

method Text The method to call when the button is dlicked
keystroke Text Command/Ctrl keyboard equivalent (optional)

Fnd_Tlbr_Button_Add adds a new button to the toolbar. The button is always appended to the right of
any existing toolbar buttons or dividers.

The button name is used to identify the button when calling other Toolbar component methods. It
should be a unique string of up to 31 characters.

The second parameter is the text label to be displayed with the button. This label can later be changed on-
the-fly by calling the Fnd_Tlbr_Button_Label function. This label is limited to 80 characters.

The third parameter is the name of an icon for the new button. Any of the icons built into the Foundation
Buttons component can be used. Your own custom icons can also be used. See the Buttons Component
(Fnd_Bttn) chapter for the complete list of built-in icons and instructions for using custom icons.

The fourth parameter is the name of a method or any string that will work properly with 4D’s EXECUTE
command. This string will be executed if the button is clicked.

For example, this code will add a button to the toolbar with a label of “Delete” and the Red X icon from
the Buttons component. It will call the DeleteRecords method when clicked:

Fnd_TIbr_Button_Add ("Button1";"Delete";"Fnd_Bttn_RedX";"DeleteRecords")

This line will have the same appearance, but will call 4D’s DELETE RECORDS command directly:
Fnd_TIbr_Button_Add ("DelBttn";"Delete";"Fnd_Bttn_RedX";"DELETE RECORDS([Invoices])")

Note that although the example above may work, it is best to use 4D’s Command name function to get
the localized command name, and to get the table name dynamically, rather than hard-coding it:

$execute_t:=Command name(58)+"("+Table name(->[Invoices])+"])"
Fnd_TIbr_Button_Add ("DelBttn";"Delete";"Fnd_Bttn_RedX";$execute_t)

You can optionally assign a key equivalent to the button. The user can then use this keyboard equivalent
rather than use the mouse to click the button. On Macintosh, the user will hold down the Command key
and press the specified key. On Windows, the Control key is used. This key can be any letter A-Z, any
number 0-9, or one of these special values:

Backspace
Delete
Period
UpArrow
DownArrow
RightArrow
LeftArrow

Foundation Developer Reference 241 Toolbar Component

For example, this line lets the user run the DuplicateRecord method by typing Command-D on
Macintosh or Control-D on Windows:

Fnd_TIbr_Button_Add ("DupBttn";"Dupe Rec";"Fnd_Bttn_Duplicate";"DuplicateRecord";"D")

This line lets the user delete records by typing Command-Backspace on Macintosh or Control-Backspace
on Windows:

Fnd_TIbr_Button_Add ("DelBttn";"Delete";"Fnd_Bttn_RedX";"DeleteRecords";"Backspace")

After calling this command, the Fnd_TIbr_Redraw command should be called to update the toolbar.

Fnd_Tlbr_Button_Count

Fnd_Tlbr_Button_Count = Number

Parameter Type Description
Function result Number The number of buttons

This function returns the number of buttons displayed in the toolbar.
$buttonCount_i:=Fnd_TIbr_Button_Count

Fnd_TIbr_Button_Enabled

Fnd_Tlbr_Button_Enabled (button name; state)

Parameter Type Description
button name Text Name of the button to modify
state Boolean True to enable the button

Use this routine to enable or disable a toolbar button. Pass True to enable the button or False to disable
the button.

Fnd_TlIbr_Button_Enabled ("PrintBttn";False) * Disable the Print button.

It is not necessary to call the Fnd_Tlbr_Redraw command after enabling or disabling a toolbar button.

Fnd_Tlbr_Button_lcon

Fnd_Tlbr_Button_lcon (button name{; icon name}) = Text

Parameter Type Description
button name Text Name of the button to modify

Foundation Developer Reference 242 Toolbar Component

icon name Text Name of the picture to use as the icon
Function result Text The current button icon name

Call this method to specify the name of a Button component icon to use as the button's icon.
Fnd_TIbr_Button_Icon ("WizardBttn";"Fnd_Bttn_Wand")

You can specify the name of a built-in icon or a custom icon. See the Buttons Component (Fnd_Bttn)
chapter for the complete list of available icons.

If this method is called after the On Load event, it should be followed by a call to the
Fnd_Tlbr_Redraw command.

This routine can also be called as a function to get the button’s current icon:
$icon_t:=Fnd_TIbr_Button_Icon ("WizardBttn")

Fnd_Tlbr_Button_Insert

Fnd_Tlbr_Button_Insert (before button; name; button text; icon name; method{; keystroke})

Parameter Type Description

before hutton Text The button in the position to insert the new button
name Text Unique name for the button object

button fext Text Button label

icon name Text Picture Library name for the icon

method Text The method to call when the button is dicked
keystroke Text Command/Ctrl keyboard equivalent (optional)

Use this method to insert a button in the toolbar. This command is identical to the
Fnd_Tlbr_Button_Add routine, except it has an additional parameter (before button) that lets you
specify the name of the button where the new toolbar button should be inserted.

If (Current user="Designer")
Fnd_TIbr_Button_Insert ("PrintBttn";"ConfBttn";"Configure";"Fnd_Bttn_

Gear";"ConfigMethod")
End if

Fnd_Tlbr_Button_Label

Fnd_Tlbr_Button_Label (button name{; label}) = Text

Parameter Type Description

button name Text Name of the button to modify
label Text New button label (optional)
Function result Text The current button label

Foundation Developer Reference 243 Toolbar Component

This method sets the label for the specified toolbar button. The label should be no longer than 80
characters.

Fnd_TIbr_Button_Label ("WizardBttn";"Setup Wizard")

This routine can also be called as a function to get the button’s current label:
$label_t:=Fnd_TIbr_Button_Label ("WizardBttn")

If this method is called after the On Load event, it should be followed by a call to the
Fnd_Tlbr_Redraw command.

Fnd_Tlbr_Button_Menu

Fnd_Tlbr_Button_Menu (button name; ->menu items)

Parameter Type Description
button name Text The button name
menu items Pointer Text array of menu items

Use this command to turn a toolbar button into a drop-down menu. First create the menu
using the Fnd_Tibr_Button_Add method. Then create a text array of menu items and call
Fnd_Tlbr_Button_Menu.

$method_t:="PrintRoutine(<FndMenuNumber>)"

Fnd_TIbr_Button_Add ("PrintBttn";"Print");"Fnd_Bttn_Printer"; $method_t)
ARRAY TEXT(PrintOptions_at;4)

PrintOptions_at{1}:="Sales Report"

PrintOptions_at{2}:="-" " Add a divider line.
PrintOptions_at{3}:="Report Editor"

PrintOptions_at{4}:="Label Editor"

Fnd_TIbr_Button_Menu ("PrintBttn";->PrintOptions_at)

You will need to use a process array with 4D 2003. A local array can be used with 4D 2004. The array can
be cleared immediately after the call.

In the example above, “<FndMenuNumber>" will be replaced with the selected menu item number, then
the entire value of the $method_t variable will be executed. So if the Report Editor menu item is selected,
the PrintRoutine method will be passed a value of 3 as the first parameter.

Then, in the PrintRoutine method, we should use a compiler directive to indicate that the first
parameter is a number:

" Project Method: PrintRoutine (menu item)
C_LONGINT($1;$selectedMenultem_i)
$selectedMenultem_i:=$1

The following strings are automatically replaced at runtime with the appropriate values:

String Value
<FndButionName> The name of the button

Foundation Developer Reference 244 Toolbar Component

<FndButtonLabel> The button's label
<FndMenuNumber> The selected menu item number
<FndMenuLabel> The selected menu item label

Note that when using the name or label strings, you will need to include the quotation marks to pass
the value as a text value to your button method. This is easily done using the \" escape sequence. For
example:

$method_t:="PrintRoutine(\"<FndMenuLabel>\")"
Fnd_TIbr_Button_Add ("PrintBttn";"Print");"Fnd_Bttn_Printer"; $method_t)

You can pass any combination of these values and other values to your button method.

The “<FndButtonName>" and “<FndButtonLabel>" strings can be used for any toolbar button style. The
“<FndMenuNumber>" and “<FndMenuLabel>" strings will be converted only for menu buttons.

Fnd_Tlbr_Button_Method

Fnd_Tlbr_Button_Method (button name{; method name}) = Text

Parameter Type Description

button name Text Name of the button to modify
method name Text Method to execute (optional)
Function result Text The current button method

Call this routine to set the associated method for the specified toolbar button. The method will be
executed when the button is clicked.

Fnd_TIbr_Button_Method ("WizardBttn";"WizardDialog")

This routine can also be called as a function to get the button’s current method:
$methodName_t:=Fnd_TIbr_Button_Method ("WizardBttn")

See the Fnd_Tlbr_Button_Add routine for more information about associating methods with toolbar
buttons.

Fnd_Tlbr_Button_Name

Fnd_Tlbr_Button_Name (index) = Number

Parameter Type Description
index Number The number of the button
Function result Text The name of the button

This function returns the name of the button at the specified position.

For example, to get the name of the last button:

Foundation Developer Reference 245 Toolbar Component

$lastButton_i:=Fnd_TIbr_Button_Count
$buttonName_t:=Fnd_TIbr_Button_Name ($lastButton_i)

Fnd_Tlbr_Button_Remove

Fnd_Tlbr_Button_Remove (button name)

Parameter Type Description

button name Text Nume of the button to modify

This command removes the button with the specified name from the toolbar.
Fnd_TIbr_Button_Remove ("WizardBttn")

If this method is called after the On Load event, it should be followed by a call to the
Fnd_Tlbr_Redraw command.

Fnd_Tlbr_Clear

Fnd_Tlbr_Clear

Parameter Type Description

No parameters required.

Fnd_Tlbr_Clear removes all objects from the toolbar so it can be rebuilt from scratch.

Fnd_TIbr_Clear

Fnd_TIbr_Button_Add ("Button1";"Search";"Fnd_Bttn_Magnifier";"QUERY([Invoices])")
Fnd_TIbr_Button_Add ("Button2";"Print";"Fnd_Bttn_Printer";"PrintTransactionsReport")
Fnd_TIbr_Redraw

If this method is called after the On Load form event has run, it should be followed by a call to the
Fnd_Tlbr_Redraw command.

Fnd_Tlbr_Divider_Add

Fnd_Tlbr_Divider_Add

Parameter Type Description

No parameters required.

Fnd_Tlbr_Divider_Add adds a divider line to the toolbar object list. The divider is added after any other
objects in the toolbar.

Foundation Developer Reference 246 Toolbar Component

Fnd_TIbr_Button_Add ("Button1";"Search";"Fnd_Bttn_Magnifier";"QUERY([Invoices])")
Fnd_TIbr_Divider_Add

Fnd_TIbr_Button_Add ("Button2";"Print";"Fnd_Bttn_Printer";"PrintTransactionsReport")
Fnd_TIbr_Redraw

Each toolbar is limited to 20 objects. Each divider counts as one object toward this limit. So, if you create a
toolbar with 17 buttons, it could include only three dividers.

If this method is called after the On Load form event has run, it should be followed by a call to the
Fnd_Tlbr_Redraw command.

Fnd_Tlbr_FormMethod

Fnd_Tlbr_FormMethod

Parameter Type Description

No parameters required.

This method must be called from any form method that inherits the toolbar form.
Fnd_Tlbr_FormMethod expects the On Load, On Activate, On Deactivate, and On Resize form
events to be enabled.

Fnd_TIbr_FormMethod

This method may be called in addition to the Fnd_Gen_FormMethod, Fnd_IO_Info, or
Fnd_IO_OutputFormMethod routines. The order in which these calls are made is not important.

Fnd_Tlbr_Info

Fnd_Tlbr_Info (info requested) = Text

Parameter Type Description
info requested Text Info desired
Function Result Text Response

Returns the requested information about the component.

$version_t:=Fnd_TIbr_Info ("version")

The Fnd_Tlbr_Info method will respond to these requests:

Request Response Example
name The component’s full name Foundation Toolbar
version The component's version number 4.0.5 beta 2

This routine can also be called using the Fnd_Gen_Componentinfo method without first testing to see
if the component is installed:

Foundation Developer Reference 247 Toolbar Component

$version_t:=Fnd_Gen_ComponentInfo ("Fnd_Tlbr";"version")

See the Fnd_Gen_Componentinfo method for more information.

Fnd_Tlbr_Redraw

Fnd_Tlbr_Redraw

Parameter Type Description

No parameters required.

This command updates the toolbar. It should be called after making any changes to the toolbar.

Fnd_TIbr_Button_Add ("UnlockButton";"Unlock";"Fnd_Bttn_Unlock";"UnlockMethod")
Fnd_TIbr_Redraw

The Toolbar component does not update the toolbar immediately when buttons are added or modified.
Instead, it waits until this command is called so that multiple objects can be added or modified before the
form update.

This command does not need to be called in the form’s On Load event. It only needs to be called when
updating the toolbar after it has been displayed. It is also not necessary to call this command after using
the Fnd_Tlbr_StatusMessage or Fnd_Tlbr_Button_Enabled routines.

Fnd_Tlbr_StatusMessage

Fnd_Tlbr_StatusMessage ({new text}) = Text

Parameter Type Description
new fext Text Text to set for the info line (optional)
Function result Text Text displayed in the info line

Fnd_Tlbr StatusMessage allows for the getting and setting of the information text line displayed in the
standard toolbar output form. Pass this routine the message to display.

Fnd_TIbr_StatusMessage ("There are "+String(Records in selection([People]))+" People
records.")

If this command is not called during the form’s On Load phase, or if it is passed a blank string, then no
status bar will be visible.

The status message can be updated at any time. It is not necessary to call the Fnd_Tlbr_Redraw
command after calling this routine to update the status message. However, if the status bar is hidden
and text has been passed to this routine to display it, or to hide a visible status bar, Fnd_Tlbr_Redraw
should be called after calling Fnd_Tlbr_StatusMessage.

This routine can also be called as a function to get the current content of the status bar:

Foundation Developer Reference 248 Toolbar Component

$displayedMessage_t:=Fnd_TIbr_StatusMessage

Fnd_Tlbr_Platform

Fnd_Tlbr_Platform ({platform name}) = Text

Parameter Type Description
platform name Text “Mac,” “Win" or “Auto” (optional)
Function result Text Selected platform name

This routine sets and gets the toolbar platform name for the current process. This affects the general
toolbar appearance. The following platform names can be used:

Platform Name
Auto
Mac
Win

Pass this routine one of the above platform names to set the toolbar appearance:
Fnd_TIbr_Platform ("Mac")

This can be done in the form’s On Load event, or anytime while the form is displayed. If you call this
method after the On Load form event, you will need to follow it with a call to the Fnd_Tlbr_Info
command.

Passing “Mac” will cause the toolbar to be drawn similar to the toolbar in other Mac OS X applications.
Passing “Win” will cause the toolbar to be drawn similarly to toolbars in Windows applications. The actual
platform in use is not related to the affect of this command — the “Mac” style can be used on Windows
and the “Win” style can be used on the Macintosh.

Pass “Auto” to this routine to allow it to automatically select the appropriate setting for the current
platform.

The actual look of the toolbar will depend not only on the current toolbar platform setting, but also on
the current style setting. See the Fnd_Tlbr_Style command for more information.

This routine can also be called as a function to get the current toolbar platform setting.
$platform_t:=Fnd_Tibr_Platform

This routine will return only “Mac” or “Win.” It will not return “Auto.”

Foundation Developer Reference 249 Toolbar Component

Fnd_Tlbr_Style

Fnd_Tlbr_Style ({style name}) = Text

Parameter Type Description
style name Text A pre-programmed style nume (optional)
Function result Text Selected style name

Fnd_Tlbr_Style sets and gets the toolbar style name for the current process. The following style names
can be used:

Style Name
Large
Smalll
Small2

Pass this routine a style name to set the toolbar style name:
Fnd_TIbr_Style ("Small2")

This can be done in the form’s On Load event, or anytime while the form is displayed. If you call this
method after the On Load form event, you will need to follow it with a call to the Fnd_Tlbr_Redraw
command.

The actual look of the toolbar will depend not only on the current toolbar style, but also on the current
platform setting (see the Fnd_Tlbr_Platform method).

Foundation Developer Reference 250 Toolbar Component

Virtual Structure Component
Fnd_VS

’:[;16 Virtual Structure component lets you present custom field and table

names to your end-users that are not equal to the names assigned in the Design

environment. All of the Foundation routines that display a field or table name get the name to display
using this component, rather than directly calling 4D's Table name and Field name functions.

Language Reference

Here is the list of routines in Foundation’s Virtual Structure component:

Fnd_VS_ CreateNameLists Fnd_VS_SetFieldTitle
Fnd_VS_FieldName Fnd_VS_SetFieldTitles
Fnd_VS_GetFields Fnd_VS_SetTableTitle
Fnd_VS_GetTables Fnd_VS_SetTableTitles
Fnd_VS_Info Fnd_VS_TableName
Fnd_VS_ReplaceString Fnd_VS_UseNameLists

Foundation Developer Reference 251 Virtual Structure Component

Fnd_VS_ CreateNameLists

Fnd_VS_ CreateNameLists

Parameter Type Description
No parameters required.

This routine will create a set of 4D lists that can be used by the virtual structure routines. This routine is
called from Foundation’s developer menu.

After calling this method, you will see a confirmation dialog:

Click the Continue button, and a dialog will ask you to enter a two-character language code for the new
lists:

Enter the language code of your choice, and then Foundation will generate a 4D list for each table in

the database. The lists will be named VS_Table001 XX, VS Table002 XX, VS Table003 XX, etc. The
“XX” will actually be the code you entered in the dialog. The numeric part of the name represents the
table number in the structure. So VS_Table001 XX contains the table and field names for the first table,
the list named VS_Table002_ XX contains the table and field names for the second table, and so on. By
referencing the list names by number rather than by name, you can safely change the name of a 4D table
without affecting these lists.

Once the lists are created, you can edit any of the table or field names by editing the lists using the 4D
List editor. Then, add a call to the Fnd_VS_UseNamelLists method in your startup routine. This will
cause the modified table and field names to be used by the other routines in this component. The new
names will also be passed to 4D’s SET TABLE TITLES and SET FIELD TITLES commands, so the
new names will be used in the 4D editors.

When you add new tables or fields to the structure, you can call this command again to update these
lists. Your existing changes will not be touched, so it is safe to run this command at any time. The
routine will only add missing table or field names.

You can safely delete any of these lists - if they are not found when the Fnd_VS_UseNameLists
method is called, then the actual 4D list names will be used instead.

Fnd_VS_FieldName

Fnd_VS_FieldName(->field) =» Text

Parameter Type Description
field Pointer Pointer to a field
Function result Text Virtual field name

This routine returns the virtual field name of the specified field.

Foundation Developer Reference 252 Virtual Structure Component

ALERT("Please enter a value in the "+Fnd_VS_FieldName (->[Contact]Last Name)+" field.")

This function is designed to be a replacement for 4D’s Field name function.

Fnd_VS_ GetFields

Fnd_VS_GetFields (->table;->pointer array{; >text array})

Parameter Type Description

table Pointer Pointer fo a table

pointer array Pointer Pointer fo a pointer array fo receive the field pointers

text array Pointer Pointer fo a text array to receive the field names (optional)

This method returns in the passed arrays the pointers to and the field names of all of the visible fields for
the specified table.
ARRAY POINTER(aFieldPtrs;0)

ARRAY TEXT(aFieldNames;0)
Fnd_VS_GetFields (->[Contacts];->aFieldPtrs;->aFieldNames)

Fnd_VS_GetTables

Fnd_VS_GetTables (->pointer array{; ->text array})

Parameter Type Description
pointer array Pointer Pointer fo a pointer array fo receive the table pointers
text array Pointer Pointer fo a text array to receive the table names (optional)

This method returns in the passed arrays the names of and pointers to all of the visible tables.

It returns the arrays already sorted in the order the developer wants them sorted.

ARRAY POINTER(aTablePtrsArray;0)
ARRAY TEXT(aTableNamesArray;0)
Fnd_VS_GetTables (->aTablePtrsArray;->aTableNamesArray)

Fnd_VS_Info

Fnd_VS_Info (info requested) =» Text

Parameter Type Description
info requested Text Info desired
Function Result Text Response

Foundation Developer Reference 253 Virtual Structure Component

Returns the requested information about the component.

$version_t:=Fnd_VS_Info ("version")

The Fnd_VS_Info method will respond to these requests:

Request Response Example
name The component's full name Foundation Virtual Structure
version The component's version number 4.0.5 beta 2

This routine can also be called using the Fnd_Gen_Componentinfo method without first testing to see
if the component is installed:

$version_t:=Fnd_Gen_ComponentInfo ("Fnd_VS";"version")

See the Fnd_Gen_Componentinfo method for more information.

Fnd_VS_ReplaceString

Fnd_VS_ReplaceSring (old string; new string)

Parameter Type Description
old string Text String 1o replace
new string Text String to replace old string

Fnd_VS_ReplaceString does a find and replace in all of the virtual table titles and field titles.

This routine was designed specifically to quickly replace underscores with spaces, but could also be used
for other global changes. For example, after this call:

Fnd_VS_ReplaceString ("_";" ")

A field named “First_Name” would appear to the user as “First Name.”

Fnd_VS_SetFieldTitle

Fnd_VS_SetFieldTitle (->field; title)

Parameter Type Description
field Pointer Field o rename
title Text Virtual field title

Fnd_VS_SetFieldTitle allows the developer to set a virtual field title for a single field.

Foundation Developer Reference 254 Virtual Structure Component

Fnd_VS_SetFieldTitle (->[Contact]Addrl;"Address Line 1")

Fnd_VS_ SetFieldTitles

Fnd_VS_SetFieldTitles (->table; ->field fitles; ->field numbers)

Parameter Type Description

table Pointer Table fo use

field titles Pointer Pointer fo array of field titles
field numbers Pointer Pointer fo array of field numbers

Fnd_VS_SetFieldTitles allows the developer to set virtual field titles. This method is designed to be
called as a replacement to 4D's SET FIELD TITLES command. Foundation will pass this information
on to 4D, but will also store the information for use by the other Virtual Structure routines.

Fnd_VS_SetTableTitle

Fnd_VS_SefTableTitle (->table; title)

Parameter Type Description
table Pointer Table to rename
title Text Virtual table title

Fnd_VS_SetTableTitle allows the developer to set a virtual table title for a single table.
Fnd_VS_SetTableTitle (->[Contact];"Customers")

Fnd_VS_SetTableTitles

Fnd_VS_SetTableTitles (->table titles; ->table numbers)

Parameter Type Description
table titles Pointer Pointer fo array of table fitles
table numbers Pointer Pointer fo array of table numbers

Fnd_VS_SetTableTitles allows the developer to set virtual table titles. This routine is designed to be
called as a replacement to 4D's SET TABLE TITLES command.

Foundation Developer Reference 255 Virtual Structure Component

Fnd_VS_TableName

Fnd_VS_TableName (->table) =» Text

Parameter Type Description
table Pointer Pointer to a table
Function result Text Virtual field name

Fnd_VS_TableName returns the virtual table name of the specified table. It is designed to replace calls
to 4D’s Table name function.

$tableName:=Fnd_VS_TableName (->[Contact])
ALERT("Are you sure you want to delete this "+$tableName+" record?")

Fnd_VS_ UseNamelLists

Fnd_VS_UseNamelists

Parameter Type Description
No parameters required.

After creating a set of virtual structure name lists using the Fnd_VS_CreateNameLists command,
call this command to use a set of virtual structure name lists. This command will use the lists that match
Foundation’s current language.

To use a language code other than English, install the Foundation Localization component and use the
Fnd_Loc_LanguageCode method to set another language code.

Foundation Developer Reference 256 Virtual Structure Component

Windows Component
(Fnd_Wnd)

’:[;16 Foundation Windows component give you tools for creating and managing windows.

This component is used by many of the other components that display windows. If a component uses the
Windows component, then you can usually call any of the Windows component routines to affect the new
window before calling the component that displays a window.

For example, to set the window title of the List component's Command Dialog, call the Windows
component's Fnd_Wnd_Title routine before calling Fnd_List_CommandDialog method:
Fnd_List_AddTolListEditor ("Edit Country Names")

Fnd_Wnd_Title ("Configuration")
Fnd_List_CommandDialog

Most of the Windows component routines are limited to the process in which they are called. For
example, you cannot use Fnd_Wnd_Title to set the title of a window that will be displayed by a new
process.

Foundation Developer Reference 257 Windows Component

Language Reference

Here is the list of routines in Foundation’s Windows component:

Fnd_Wnd_CancelCloseAll Fnd_Wnd_SavePosition
Fnd_Wnd_CloseAllWindows Fnd_Wnd_SendCloseRequests
Fnd_Wnd_CloseBox Fnd_Wnd_SetCloseBox
Fnd_Wnd_CloseNow Fnd_Wnd_SetPosition
Fnd_Wnd_Info Fnd_Wnd_SetTitle
Fnd_Wnd_MoveOnScreen Fnd_Wnd_SetType
Fnd_Wnd_OpenFormWindow Fnd_Wnd_Title
Fnd_Wnd_OpenWindow Fnd_Wnd_Type
Fnd_Wnd_Position Fnd_Wnd_UseSavedPosition

Fnd_Wnd_ CancelCloseAll

Fnd_Wnd__CancelCloseAll

Parameter Type Description
No parameters required.

Call this method to end Foundation’s attempts to close all windows. For example, if the user selects Close
All Windows from the Window menu, and a dialog asks if they want to save changes, and Cancel is
selected, call this so no more windows are closed.

If (Fnd_Gen_QuitNow)
Fnd_DlIg_Confirm ("Are you sure you want to quit without saving?")
If (OK=0)
Fnd_Wnd_CancelCloseAll
End if
End if

Fnd_Wnd_ CloseAllWindows

Fnd_Wnd_CloseAllWindows ({wait?}) = Boolean

Parameter Type Description
wait? Boolean Wait for all windows to close? (optional)
Function result Boolean Did all windows close?

Call this method to tell all of the other processes to close their windows. If the wait parameter is passed
and is True, this process will wait until all of the windows have been closed, and then return True. If it
takes too long for the windows to close, or the user cancels the closing, then False is returned.

Foundation Developer Reference 258 Windows Component

Do not pass True to this routine from a process that is displaying a window that needs to be closed. It
will not work properly, since it will not be possible to close the window of the current process while this
method is running.

Fnd_Wnd_ CloseBox

Fnd_Wnd_CloseBox ({display close box?}) =» Boolean

Parameter Type Description
display close box? Boolean Display the close box? (optional)
Function result Boolean True if the next window will have a close box

Call this routine to add a close box to the next window displayed by the Fnd_Wnd_OpenWindow or
Fnd_Wnd_OpenFormWindow commands.

Fnd_Wnd_CloseBox (True)
Fnd_Wnd_OpenFormWindow (->[Fnd_Forms];"ConfigureScanner")

This routine will affect only the next window in the current process.

This routine has replaced the Fnd_Wnd_SetCloseBox method.

Fnd_Wnd_ CloseNow

Fnd_Wnd_CloseNow =» Boolean

Parameter Type Description

No parameters required.
Function result Boolean True if it is fime to close the window

This method returns True if Foundation is trying to close all windows. For example, this routine will
return True if the user Option-clicks (on Macintosh) or Alt-clicks (on Windows) a window’s close box.
You can test for this condition in a window's form method using this routine.

Case of
: (Form event=0n Load)

: (Fnd_Wnd_CloseNow)
CANCEL
: (Form event=0n OQutside Call)

End case

You should call this routine from any non-modal windows that do not already call Foundation’s
Fnd_Gen_FormMethod method. This function should be tested before the On Outside Call form
event test, since it will always be delivered during this form event.

Foundation Developer Reference 259 Windows Component

If you do call Fnd_Gen_FormMethod, Fnd_IO_InputFormMethod, or
Fnd_IO_OutputFormMethod, you do not need to call this routine.

Fnd_Wnd_Info

Fnd_Wnd_Info (info requested) => Text

Parameter Type Description
info requested Text Information desired
Function Result Text Response

Returns the requested information about the component.

$version_t:=Fnd_Wnd_Info ("version")

The Fnd_Wnd_Info method will respond to these requests:

Request Response Example
name The component's full name Foundation Windows
version The component's version number 4.0.5 beta 2

This routine can also be called using the Fnd_Gen_Componentinfo method without first testing to see

if the component is installed:

$version_t:=Fnd_Gen_ComponentInfo ("Fnd_Wnd";"version")

See the Fnd_Gen_Componentinfo method for more information.

Fnd_Wnd_MoveOnScreen

Fnd_Wnd_MoveOnScreen (->left; ->top; ->right; ->bottom; {window type})

Parameter Type Description

left Pointer Pointer fo the left side of the window
top Pointer Pointer fo the top of the window

right Pointer Pointer fo the right side of the window
bottom Pointer Pointer to the bo